首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ca-regulatory system in squid mantle muscle was studied. The findings were as follows. (a) Squid mantle myosin B (squid myosin B) was Ca-sensitive, and its Ca-sensitivity was unaffected by addition of a large amount of rabbit skeletal myosin (skeletal myosin) or rabbit skeletal F-actin (skeletal F-actin). (b) Squid myosin was prepared from the mantle muscle. It showed a heavy chain component and two light chain components in the SDS-gel electrophoretic pattern: the molecular weights of the latter two were 17,000 and 15,000. Actomyosin reconstituted from squid myosin and skeletal (or squid) actin showed Ca-sensitivity in superprecipitation and Mg-ATPase assays. EDTA- treatment had no effect on the Ca-sensitivity of squid myosin. (c) Squid mantle actin (squid actin) was prepared by the method of Spudich and Watt. Hybrid actomyosin reconstituted by using the pure squid actin preparation with skeletal myosin showed no Ca-sensitivity in Mg-ATPase assay, whereas that reconstituted using crude squid actin showed marked Ca-sensitivity. The crude squid actin contained four protein components which were capable of associating with F-actin in 0.1 M KCl, 1 mM MgCl2 and 20 mM Tris-maleate (pH7.5). (d) Native tropomyosin was prepared from squid mantle muscle, and it conferred Ca-sensitivity on skeletal actomyosin as well as on a hybrid actomyosin reconstituted from squid actin and skeletal myosin. (e) Squid native tropomyosin was separated into troponin and tropomyosin fractions by placing it in 0.4 M LiCl at pH 4.7. The troponin fraction was further purified by DEAE-cellulose chromatography. Squid troponin thus obtained was different in mobility from rabbit skeletal or carp dorsal troponin; three bands of squid troponin corresponded to molecular weights of 52,000, 28,000, and 24,000 daltons. It could confer Ca-sensitivity in the presence of tropomyosin on skeletal actomyosin as well as on a hybrid reconstituted from squid actin and skeletal myosin. (f) Squid myosin B, and two hybrid actomyosins were compared as regards Ca and Sr requirements for their Mg-ATPase activities. The myosin-linked regulatory system rather than the thin-filament-linked regulatory system was predominant in squid myosin B. Squid myosin B required higher Ca2+ and Sr2+ concentrations for Mg-ATPase activity; half-maximal activation of Mg-ATPase was obtained at 0.8 micron Ca2+ and 28 micron Sr2+ with skeletal myosin B, and at 2.5 micron Ca2+ and 140 micron Sr2+ with squid myosin B.  相似文献   

2.
The role of the overlap region at the ends of tropomyosin molecules in the properties of regulated thin filaments has been investigated by substituting nonpolymerizable tropomyosin for tropomyosin in a reconstituted troponin-tropomyosin-actomyosin subfragment 1 ATPase assay system. A previous study [Heeley, Golosinka & Smillie (1987) J. Biol. Chem. 262, 9971-9978] has shown that at an ionic strength of 70 mM, troponin will induce full binding of nonpolymerizable tropomyosin to F-actin both in the presence and absence of calcium. At a myosin subfragment 1-to-actin ratio of 2:1 ([actin] = 4 microM) and an ionic strength of 50 mM, comparable levels of ATPase inhibition were observed with increasing levels of tropomyosin or the truncated derivative in the presence of troponin (-Ca2+). Large differences were noted, however, in the activation by Ca2+. Significantly lower ATPase activities were observed with nonpolymerizable tropomyosin and troponin (+Ca2+) over a range of subfragment 1-to-actin ratios from 0.25 to 2.5. The concentration of subfragment 1 required to generate ATPase activities exceeding those seen with actomyosin subfragment 1 alone under these conditions was 3-4-fold greater when nonpolymerizable tropomyosin was used. Similar effects were seen at the much lower ionic strength of 13 mM and are consistent with the reduced ATPase activity with nonpolymerizable tropomyosin observed previously [Walsh, Trueblood, Evans & Weber (1985) J. Mol. Biol. 182, 265-269] at low ionic strength and a subfragment 1-to-actin ratio of 1:100. Little cooperativity in activity as a function of subfragment 1 concentration with either intact tropomyosin or its truncated derivative was observed under the present conditions. Further studies are directed towards an understanding of these effects in terms of the two-state binding model for the attachment of myosin heads to regulated thin filaments.  相似文献   

3.
Heat-treatment of natural actomyosin at low ionic strength in the absence of substrate results in substantial augmentation of Mg-ATPase, and minor increase of Ca-ATPase and decrease of EDTA-ATPase. Changes in Steady-state activity persist despite decrease of temperature. The effect appears to involve a thermally induced transition to a stable potentiated state for natural actomyosin. The phenomenon requires interaction between actin and myosin during heat-treatment; however, the presence of troponin and tropomyosin is needed for potentiation to be fully manifest. Thermal potentiation significantly modifies the Arrhenius behavior of actomyosin ATPase, and the augmented catalytic rate reflects a large increase of activation entropy.  相似文献   

4.
Bovine aortic tropomyosin has been isolated by DEAE-Sepharose chromatography following isoelectric precipitation and ammonium sulfate fractionation. A single polypeptide [Mr 36 000 on a sodium dodecyl sulfate (SDS)-polyacrylamide gel] was obtained under different electrophoretic conditions. The amino acid composition of bovine tropomyosin was very similar to that of rabbit skeletal muscle; the amino-terminal residue is blocked. The molecular weight of the native tropomyosin (76 000), which is twice that calculated from the SDS-polyacrylamide gel, suggests that the molecule is a dimer. The diffusion coefficient of 3.4 X 10(-7) cm2 s-1 and the frictional coefficient of 1.7 indicate that the molecule is asymmetric. Comparative high-pressure liquid chromatography peptide mapping of rabbit skeletal and bovine aortic tropomyosins shows primary structure variation. Bovine aortic tropomyosin binds calcium under physiological conditions of pH and ionic strength (22 mol of Ca2+/mol of tropomyosin with a Kd of 1.4 mM). Such a property is not shared by skeletal tropomyosin. In low Mg2+ concentration, both skeletal and aortic actin activations of the skeletal myosin ATPase activity are calcium independent. Addition of aortic tropomyosin to a hybrid actomyosin (aortic actin, skeletal myosin) yields an enhancement of the actin activation of the myosin ATPase activity, but the addition of skeletal tropomyosin yields a decrease of this activity. However, both the enhancement and decrease are calcium dependent. Addition of skeletal or aortic tropomyosin to an actomyosin system, where both actin and myosin come from skeletal muscle, yields only an enhancement of the actin activation of the myosin ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The actin-activated Mg-ATPase activities of unphosphorylated and heavy chain phosphorylated Dictyostelium myosin II and of a Dictyostelium myosin II heavy meromyosin (HMM) fragment were examined at different Mg2+ and KCl concentrations. The Mg-ATPase activity of HMM displayed a maximum rate, Vmax, of about 4.0/s and a Kapp (actin concentration required to achieve 1/2 Vmax) that increased from 8 to 300 microM as the KCl concentration increased from 0 to 120 mM. When assayed with greater than 5 mM Mg2+ and 0 mM KCl the unphosphorylated Dictyostelium myosin II yielded a Kapp of 0.25 microM and a Vmax of 2.8/s. At lower Mg2+ concentrations or with 50 mM KCl the data were not fit well by a single hyperbolic curve and Kapp increased to 25-100 microM. The increase in Kapp did not correlate with the loss of sedimentable filaments. At KCl concentrations above 100 mM Vmax increased to greater than 4/s. Heavy chain phosphorylated myosin (3.5 mol of phosphate/mol myosin) displayed a Vmax of about 5/s and a Kapp of 50 microM under all conditions tested. Thus, heavy chain phosphorylation inhibited the actin-activated Mg-ATPase activity of Dictyostelium myosin II in 5-10 mM Mg2+ and low ionic strength through an increase in Kapp.  相似文献   

6.
The contractile and regulatory proteins of insect flight muscle   总被引:9,自引:2,他引:7       下载免费PDF全文
1. Myosin, actin and the regulatory proteins were prepared from insect flight muscle. 2. The light subunit composition of the myosin differed from that of vertebrate muscle myosin. The ionic strength and pH dependence of the myosin adenosine triphosphatase (ATPase) were measured. 3. Actin was associated with a protein of subunit molecular weight 55000 and was purified by gel filtration. Impure actin had protein bound at a periodicity of about 40nm. 4. Regulatory protein extracts had tropomyosin and troponin components of subunit molecular weight 18000, 27000 and 30000. Crude extracts of regulatory proteins inhibited the ATPase activity of desensitized or synthetic actomyosin; this inhibition was relatively insensitive to high Ca(2+) concentrations. Purified insect regulatory protein produced as much sensitivity to Ca(2+) as did the rabbit troponin-tropomyosin complex. 5. Synthetic actomyosins were made from rabbit and insect proteins. Actomyosins containing insect myosin had a low ATPase activity that was activated by tropomyosin. The Ca(2+) sensitivity of actomyosins containing insect myosin or actin, with added troponin-tropomyosin complex from rabbit, was comparable with that of rabbit actomyosin.  相似文献   

7.
1. After removal of tropomyosin and troponin from the `natural'' actomyosin complex, the adenosine triphosphatase activity of the resulting `desensitized'' actomyosin is stimulated to the same extent by various bivalent cations with an ionic radius in the range 0·65–0·99å when tested at optimum concentration of the metal ion in the presence of 2·5mm-ATP at low ionic strength and pH7·6. Under identical conditions the adenosine triphosphatase activity of myosin alone is stimulated to an appreciable extent only by Ca2+ (ionic radius 0·99å). 2. Tropomyosin narrows the range of size of the stimulatory cations by inhibiting specifically the adenosine triphosphatase activity of `desensitized'' actomyosin when stimulated by Ca2+ or the slightly smaller Cd2+ (ionic radius 0·97å). Tropomyosin has no effect on the adenosine triphosphatase activity of `desensitized'' actomyosin when stimulated by the smaller cations, nor on the Ca2+-activated adenosine triphosphatase activity of myosin alone. 3. The adenosine triphosphatase activity of the `natural'' actomyosin system (containing tropomyosin and troponin) stimulated by the smallest cation, Mg2+ (ionic radius 0·65å), is low when the system is deprived of Ca2+ but high in the presence of small amounts of Ca2+. This sensitivity to Ca2+ seems to be a unique feature of the Mg2+-stimulated system. 4. The changes in specificity of the myosin adenosine triphosphatase activity in its requirement for bivalent cations caused by interaction with actin, tropomyosin and troponin primarily concern the size of the metal ions. The effects on enzymic properties of myofibrils due to tropomyosin and troponin can be demonstrated at low and at physiological ionic strength.  相似文献   

8.
Dinitrophenylated reconstituted or natural actomyosin effected changes in the Ca2+ sensitivity which were dependent upon the ionic strength of the reaction medium. Dinitrophenylation of reconstituted actomyosin in 0.6 M KCl led to the incorporation of 2-6 mol of the reagent per 5-10(5) g of protein and it possessed considerable Ca2+ sensitivity. Dinitrophenylated natural actomyosin under the same conditions lost most of its Ca2+ sensitivity when 1.3-5.4 mol of the dinitrophenyl group were bound. The myosin from these modified actomyosins did not lose Ca2+ sensitivity and the myosin was labeled only with 0.4-1.7 mol of the dinitrophenyl group. Dinitrophenylation of both kinds of actomyosin in 0.06 M KCl abolished the Ca2+ sensitivity; the myosin from the modified actomyosins also lost Ca2+ sensitivity. Myosin alone was more susceptible to a loss of Ca2+ sensitivity than myosin in actomyosin. Actin protected the ability of myosin to sense Ca2+ regulated actin in modified actomyosin at 0.6 M KCl but not at 0.06 M KCl. Actomyosin dinitrophenylated in the presence of ATP lost Ca2+ sensitivity. However, the myosin from this actomyosin possessed Ca2+ sensitivity. Thiolysis of the dinitrophenylated actomyosin by 2-mercaptoethanol at low ionic strength did not restore the Ca2+ sensitivity of this actomyosin or its myosin although there was a significant loss of the dinitrophenyl group.  相似文献   

9.
Smooth and non-muscle tropomyosins were found to produce a 2-3-fold Ca-insensitive stimulation of the ATPase activity of reconstituted skeletal muscles actomyosin at normal MgATP concentrations and physiological ratios of myosin to actin. Under the same conditions skeletal muscles tropomyosin had no effect. Similar effects of these three tropomyosins were observed for the low myosin/F-actin ratios necessary for kinetic measurements. Since it could be established that this actomyosin system, with or without tropomyosin, obeyed Michaelian kinetics, the tropomyosin effects could be interpreted in terms of their influence on maximal turnover (V) or on the affinity of myosin for actin (Kapp). Accordingly, gizzard tropomyosin had practically no effect on the affinity and reduced only slightly the value of V, compared to pure actin. In contrast to gizzard tropomyosin, brain tropomyosin produced an approximately twofold increase in both Kapp and V; i.e. it increased the turnover rate but decreased the affinity. It is apparent from the data that brain tropomyosin acts as an uncompetitive activator with respect to pure actin, while having the same V as the actin plus gizzard tropomyosin complex. Further studies on these tropomyosins show that only skeletal and smooth muscle tropomyosin have similar functional properties with respect to troponin inhibition and the activation of the ATPase at low ATP concentrations. It is suggested that the noted increases in V by tropomyosin are caused by the acceleration of the dissociation of the myosin head from actin at the end point of the cross bridge movement.  相似文献   

10.
Troponin was isolated from striated adductor muscles of the "Akazara" scallop (Chlamys nipponensis akazara), and purified in an active form by DEAE-cellulose (Whatman DE52) column chromatography and subsequent gel filtration on Sephacryl S-300. According to sodium dodecyl sulfate-gel electrophoresis and densitometry, Akazara troponin is composed of three components having molecular weights of 52,000, 40,000, and 20,000 in a molar ratio of 1:1:1. The three components were separated from each other by column chromatography in the presence of 6 M urea and 1 mM EDTA on SP-Sephadex C-50 and DEAE-cellulose. The Mr 20,000 component was regarded as troponin C according to the Ca2+-binding properties, which was found to bind 0.7 mol of Ca2+/mol at 0.1 mM Ca2+. The association constant of Ca2+ to troponin C was estimated to be 5 X 10(5) M-1, and was not affected by the addition of 2 mM MgCl2. The Mr 52,000 component appeared to be troponin I, since it inhibited, together with Akazara tropomyosin, both Mg-ATPase and superprecipitation activities of actomyosin reconstituted from rabbit myosin and actin, and the inhibition of the ATPase activity was diminished by the addition of Akazara troponin C. Finally, the Mr 40,000 component appeared to be troponin T, since it co-precipitated with actin-tropomyosin filament and was indispensable with Akazara troponin C and the Mr 52,000 component (troponin I) for conferring the Ca2+ sensitivity to reconstituted actomyosin.  相似文献   

11.
P D Chantler  W B Gratzer 《Biochemistry》1976,15(10):2219-2225
The simplest interacting unit of actomyosin, viz., single myosin heads (subfragment 1) with actin monomers, has been studied at physiological ionic strength, by isolating the actin molecules from each other on a solid support. The interaction is characterized by a binding constant of 10(5) to 10(6) M-1 in the temperature range 4-30degrees C. It is endothermic with a standard enthalpy of 24 +/- 10 kcal mol-1, and a standard entropy of 110 +/- 40 eu. It is thus, like many protein-protein association processes, entropy-driven. Despite the high affinity of the association, which is comparable in its binding constant to that of subfragment 1 with F-actin, there is only very small activation of myosin ATPase. The ionic-strength dependence of the interaction shows unusual features. Binding of the proteins of the relaxing system to the monomeric actin was also examined: troponin binds both in the presence and absence of calcium ions, but neither tropomyosin nor the tropomyosin-troponin complex was found to bind significantly. Monomeric actin has also been examined as a function of ionic strength by spectroscopic methods; it appears that conformational differences between the G and the F state are the consequence of polymerization, and not of the change in ionic strength required to being the conversion about.  相似文献   

12.
Myosin B exhibiting Ca2+ sensitivity in superprecipitation and Mg-ATPase [EC 3.6.1.3] activity was extracted from tracheal smooth muscle. Repeated washing with 2mM KCl and 1 mM NaHCO3 resulted in the loss of these activities. However, on addition of native tropomyosin, the myosin B regained its original properties. Native tropomyosin is the regulatory system in this smooth muscle.  相似文献   

13.
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (+/-2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37 degrees C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 muM Ca2+ concentration (CaEGTA binding constant equals 4.4 - 10(5) at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6-9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8- and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6-10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle.  相似文献   

14.
Caldesmon binds equally to both gizzard actin and actin containing stoichiometric amounts of bound tropomyosin. The binding of caldesmon to actin inhibits the actin-activation of the Mg-ATPase activity of phosphorylated myosin only when the actin contains bound tropomyosin. The reversal of this inhibition requires Ca2+-calmodulin; but it occurs without complete release of bound caldesmon. Although phosphorylation of the caldesmon occurs during the ATPase assay, a direct correlation between caldesmon phosphorylation and the release of the inhibited actomyosin ATPase is not consistently observed.  相似文献   

15.
Troponin B is an inhibitor of the Mg++-activated ATPase activity of actomyosin. The inhibitory effect, which is observed, however, depends upon whether tropomyosin is also present. In the absence of tropomyosin the inhibition by troponin B is markedly reduced by increasing the ionic strength from 0.03 to 0.07, but is not affected by calcium up to a concentration of 10-4 M. Troponin A relieves the inhibition in both the absence and presence of calcium, an effect which is also shown by many polyanions and is illustrated by using RNA. Tropomyosin enhances the inhibitory effect of troponin B and renders it more resistant to increasing ionic strength but it does not make the inhibition calcium-sensitive. However, when troponin A or low concentrations of polyanions are added to troponin B and tropomyosin, the actomyosin ATPase activity becomes calcium-sensitive; i.e., in the presence of tropomyosin, troponin A or polyanions do not relieve the inhibitory action of troponin B in the absence of calcium but only in its presence. In marked contrast to this is the effect of troponin A in the absence of tropomyosin where it neutralizes the effect of troponin B under all conditions. Thus troponin A and the polyanions both confer calcium regulation on the troponin B-tropomyosin system. The similar effects exhibited by troponin A and the polyanions suggest that the addition of net negative charge to troponin B is an important factor in the conferral of calcium sensitivity. It is also clear that tropomyosin is an essential component of the regulatory mechanism.  相似文献   

16.
Phosphorylated rabbit cardiac alpha alpha-tropomyosin has been prepared either enzymatically (Montgomery, K., and Mak, A.S. (1984) J. Biol. Chem. 259, 5555-5560) or by fractionation of the phosphorylated and nonphosphorylated forms on a Mono Q column in 9 M urea, 50 mM Tris, pH 8.0. Although the phosphorylated and nonphosphorylated forms showed no difference in their F-actin binding properties, the phosphorylated protein had substantially higher viscosities at low ionic strengths, indicating a greater propensity for head-to-tail interaction. Similar measurements showed the strengthening of this interaction by whole troponin to be substantially reduced by phosphorylation even though the binding of whole troponin and troponin T to tropomyosin was demonstrated by affinity chromatography to be, if anything, strengthened by phosphorylation. In a reconstituted actin (4 microM) plus myosin subfragment 1 ATPase assay (50 mM ionic strength), significantly higher activities over a range (1 to 8 microM) of subfragment 1 concentrations were observed with phosphorylated tropomyosin compared with the nonphosphorylated protein. In the fully reconstituted system with troponin, there was no significant difference in the inhibition of ATPase in the absence of Ca2+. However, in its presence, the activities were appreciably increased with the phosphorylated tropomyosin compared to those with the nonphosphorylated form. These differences were eliminated by treatment of the phosphorylated tropomyosin with alkaline phosphatase. This is the first demonstration of an effect of phosphorylation on the functional properties of tropomyosin.  相似文献   

17.
Gary Bailin 《BBA》1976,449(2):310-326
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (±2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37°C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 μM Ca2+ concentration (CaEGTA binding constant = 4.4 · 105 at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6–9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8-and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6–10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle  相似文献   

18.
We have used an enzymatic technique to determine the weakening effect of paratropomyosin, a new myofibrillar protein, on rigor linkages formed between actin and myosin, and to clarify the distinct function of paratropomyosin, as to that of tropomyosin. Paratropomyosin inhibited the Mg-ATPase activity and enhanced the K-ATPase activity of reconstituted actomyosin stoichiometrically, and its maximal binding to actin was estimated to occur at a molar ratio of 1: 12.5. Paratropomyosin also inhibited the myofibrillar Mg-ATPase activity by 49% and enhanced the myofibrillar K-ATPase activity to 126%, while tropomyosin had no effect on these ATPases. These results indicate that paratropomyosin is able to bind to thin filaments of myofibrils, because the binding site for paratropomyosin on F-actin is different from that for tropomyosin, and that, due to its greater affinity for the myosin binding site on actin, paratropomyosin competes for the binding site and helps weaken rigor linkages.  相似文献   

19.
Troponins which confer Ca-sensitivity to skeletal actomyosin ATPase were successfully isolated from striated and smooth adductor muscles of "Akazara" scallop (Chlamys nipponensis akazara). SDS-gel electrophoresis showed that striated and smooth adductor troponins were composed of three components having molecular weights of about 52K (52,000), 40K, and 20K, and about 40K, 21K, and 20K, respectively. The Mg-ATPase activity of actomyosin reconstituted from rabbit actin and either Akazara striated adductor myosin or smooth adductor myosin, along with the respective tropomyosin and troponin, indicated that the Ca2+ concentration required for the activation of actomyosin ATPase appeared to be favorable to myosin-linked regulation.  相似文献   

20.
K Y Horiuchi  S Chacko 《Biochemistry》1988,27(22):8388-8393
Cysteine residues of caldesmon were labeled with the fluorescent reagent N-(1-pyrenyl)maleimide. The number of sulfhydryl (SH) groups in caldesmon was around 3.5 on the basis of reactivity to 5,5'-dithiobis(2-nitrobenzoate); 80% of the SH groups were labeled with pyrene. The fluorescence spectrum from pyrene-caldesmon showed the presence of excited monomer and dimer (excimer). As the ionic strength increased, excimer fluorescence decreased, disappearing at salt concentrations higher than around 50 mM. The labeling of caldesmon with pyrene did not affect its ability to inhibit actin activation of heavy meromyosin Mg-ATPase and the release of this inhibition in the presence of Ca2+-calmodulin. Tropomyosin induced a change in the fluorescence spectrum of pyrene-caldesmon, indicating a conformational change associated with the interaction between caldesmon and tropomyosin. The affinity of caldesmon to tropomyosin was dependent on ionic strength. The binding constant was 5 x 10(6) M-1 in low salt, and the affinity was 20-fold less at ionic strengths close to physiological conditions. In the presence of actin, the affinity of caldesmon to tropomyosin was increased 5-fold. The addition of tropomyosin also changed the fluorescence spectrum of pyrene-caldesmon bound to actin filaments. The change in the conformation of tropomyosin, caused by the interaction between caldesmon and tropomyosin, was studied with pyrene-labeled tropomyosin. Fluorescence change was evident when unlabeled caldesmon was added to pyrene-tropomyosin bound to actin. These data suggest that the interaction between caldesmon and tropomyosin on the actin filament is associated with conformational changes on these thin filament associated proteins. These conformational changes may modulate the ability of thin filament to interact with myosin heads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号