首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gerratana B  Stapon A  Townsend CA 《Biochemistry》2003,42(25):7836-7847
The Erwinia carotorova carA, carB, and carC gene products are essential for the biosynthesis of (5R)-carbapen-2-em-3-carboxylic acid, the simplest carbapenem beta-lactam antibiotic. CarA (hereafter named carbapenam synthetase) has been proposed to catalyze formation of (3S,5S)-carbapenam-3-carboxylic acid from (2S,5S)-5-carboxymethyl proline based on characterization of the products of fermentation experiments in Escherichia coli cells transformed with pET24a/carB and pET24a/carAB, and on sequence homology to beta-lactam synthetase, an enzyme that catalyzes formation of a monocyclic beta-lactam ring with concomitant ATP hydrolysis. In this study, we have purified recombinant carbapenam synthetase and shown in vitro that it catalyzes the ATP-dependent formation of (3S,5S)-carbapenam-3-carboxylic acid from (2S,5S)-5-carboxymethyl proline. The kinetic mechanism is Bi-Ter where ATP is the first substrate to bind followed by (2S,5S)-5-carboxymethyl proline and PPi is the last product released based on initial velocity, product and dead-end inhibition studies. The reactions catalyzed by carbapenam synthetase with different diastereomers of the natural substrate and with alternate alpha-amino diacid substrates were studied by HPLC, ESI mass spectrometry, and steady-state kinetic analysis. On the basis of these results, we have proposed a role for each moiety of (2S,5S)-5-carboxymethyl proline for binding to the active site of carbapenam synthetase. Coupled enzyme assays of AMP and pyrophosphate release in the reactions catalyzed by carbapenam synthetase with adipic and glutaric acid, which lack the alpha-amino group, in the presence and absence of hydroxylamine support the formation of an acyladenylate intermediate in the catalytic cycle.  相似文献   

2.
1. ATPase isolated from Rhodospirillum rubrum by chloroform extraction and purified by gel filtration or affinity chromatography shows three bands (alpha, beta and gamma) upon electrophoresis in sodium dodecyl sulphate. 2. Ca2+-ATPase activity of the preparation is inhibited by aurovertin and efrapeptin but not by oligomycin. Activity may be inhibited by treatment with 4-chloro-7-nitrobenzofurazan and subsequently restored by dithiothreitol. 3. The enzyme fails to reconstitute photophosphorylation in chromatophores depleted of ATPase by sonic irradiation. 4. Most of the active protein from the crude chloroform extract binds to an affinity chromatography column bearing an immobilised ADP analogue but not to a column bearing immobilised pyrophosphate. 5. In the absence of divalent cations, a component with a very high specific activity for Ca2+-ATPase is eluted from the column by 1.6 mM ATP. This protein migrates asa single band on 5% polyacrylamide gel electrophoresis and only possesses three subunits. At 12 mM ATP an inactive protein is eluted which does not run on acid or alkali polyacrylamide gels and shows a complex subunit structure. 6. ATPase preparations prepared by acetone extraction or by sonic irradiation of chromatophores may also be purified 10-fold by affinity chromatography. 7. The inclusion of 5 mM MgCl2 or CaCl2 during affinity chromatography of chloroform ATPase increases the capacity of the column for the enzyme and demands a higher eluting concentration of ATP. 8. When the enzyme is more than 90% inhibited by efrapeptin or 4-chloro-7-nitrobenzofurazan, the binding characteristics of the enzyme are not affected. 9. 10 mM Na2SO3, which greatly stimulates the Ca2+- and Mg2+-dependent ATPase activity of the enzyme and increases Ki (ADP) for Ca2+-ATPase from 50 to 850 micron, prevents binding to the affinity column. Binding may be restored by the addition of divalent cations. 10. Na2SO3 increases the rate of ATP hydrolysis, ATP-driven H+ translocation and ATP-driven transhydrogenase in chromatophores. 11. It is proposed that anions such as sulphite convert the chromatophore ATPase into a form which is a more efficient energy transducer.  相似文献   

3.
Membrane-bound 5'-nucleotidase from Vibrio parahaemolyticus was solubilized and purified using a nonionic detergent, heptyl-beta-D-thioglucoside, and was characterized. This enzyme required Mg2+ for activity, maximum activity being observed at 5 and 20 mM Mg2+ with AMP and ATP, respectively, as substrates. Of the divalent cations tested, Mn2+ and Co2+ were able to replace Mg2+ partially, whereas Ca2+ was ineffective. Zinc strongly inhibited the enzyme activity and Ni2+ caused partial inhibition. This enzyme required Cl- for activity, the optimal concentration being 20 mM or more. The order of effectiveness of anions was Cl- greater than Br- greater than I- approximately NO3-. Sulfate and acetate were ineffective. The optimal pH was 8.0. The activity of the purified enzyme was stimulated by the addition of lipid to the assay mixture. This enzyme hydrolyzed all 5'-nucleotides tested, but did not hydrolyze 3'-nucleotides or ribose 5-phosphate. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme appeared to be a single polypeptide, with a molecular weight of 72 kDa.  相似文献   

4.
An enzyme cleaving l-2-oxothiazolidine-4-carboxylic acid to l-cysteine was purified 75-fold with 8% recovery to near homogeneity from crude extracts of Paecilomyces varioti F-1, which had been isolated as a fungus able to assimilate l-2-oxothiazolidine-4-carboxylic acid. The molecular mass was estimated to be 260 kDa by gel filtration. The purified preparation migrated as a single band of molecular mass 140 kDa upon SDS-PAGE. The maximum activity was observed at a range of pH 7.0–8.0 and at 50 °C. The enzyme activity was completely inhibited by SH-blocking reagents such as AgNO3, p-chloromercuribenzoic acid, N-ethylmaleimide, and N-bromosuccinimide. The enzyme required ATP, Mg2+, and KCl for the cleavage of l-2-oxothiazolidine-4-carboxylic acid. The enzyme also cleaved 5-oxo-l-proline to l-glutamic acid and is considered to be 5-oxo-l-prolinase. Received: 23 March 1999 / Accepted: 22 June 1999  相似文献   

5.
K Glund  W Schlumbohm  M Bapat  U Keller 《Biochemistry》1990,29(14):3522-3527
A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work [Gauvreau, D., & Waring, M. J. (1984) Can. J. Microbiol. 30, 439-450] revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis [Keller, U., Kleinkauf, H., & Zocher, R. (1984) Biochemistry 23, 1479-1484].  相似文献   

6.
Vacuolar proton-translocating ATPase from bovine kidney was purified in one step by immunoprecipitation and immunoaffinity chromatography using an immobilized anti-H+ATPase monoclonal antibody. The monoclonal antibody affinity matrix coprecipitated polypeptides with Mr of 70,000, a cluster at 56,000, 45,000, 42,000, 38,000, 33,000, 31,000, 15,000, 14,000, and 12,000 from solubilized bovine kidney microsomal membranes, a pattern that was unaffected by different detergent washing conditions. A nearly identical pattern of polypeptides was observed in H+ATPase partially purified by an entirely independent method. The immunoaffinity purified H+ATPase had reconstitutively active ATP-induced acidification and potential generation that was inhibited by N-ethylamaleimide. The purified enzyme had specific activities as high as 3.1 mumol/min/mg protein, dual pH optima at 6.5 and 7.2, and a Km for ATP of 150 microM. The substrate preference was ATP greater than ITP much greater than UTP greater than GTP greater than CTP. The affinity purified H+ATPase was stimulated by phosphatidyl glycerol greater than phosphatidyl inositol much greater than phosphatidyl choline greater than phosphatidyl serine. The immunoaffinity purified enzyme did not require monovalent anions or cations for activity, and the divalent cation preference for activity was Mn, Mg much greater than Ca greater than Co much greater than Sr, Ba. The enzyme was not inhibited by ouabain, azide, or vanadate, but had kappa 1/2 inhibitory concentrations of 22.2 microM for N-ethylmaleimide, 14.9 microM for NBD-Cl, 4.9 microM for N,N'-dicyclohexylcarbodiimide, 13.8 microM for 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, and 315 microM for Zn, values close to those for inhibition of proton transport in the native vesicles. The affinity purified kidney enzyme has similarities to but also significant differences in structural and enzymatic properties from those reported for other vacuolar H+ATPase.  相似文献   

7.
The properties of Mg2+-ATPase in the vacuole of Saccharomyces cerevisiae were studied, using purified intact vacuoles and right-side-out vacuolar membrane vesicles prepared by the method of Y. Ohsumi and Y. Anraku ((1981) J. Biol. Chem. 256, 2079). The enzyme requires Mg2+ ion but not Ca2+ in. Cu2+ and Zn2+ ions inhibit the activity. The optimal pH is at pH 7.0. The enzyme hydrolyzes ATP, GTP, UTP, and CTP in this order and the Km value for ATP was determined as 0.2 mM. It does not hydrolyze ADP, adenosyl-5'-yl imidodiphosphate, or p-nitrophenyl phosphate. ADP does not inhibit hydrolysis of ATP by the enzyme. The activities of intact vacuoles and of vacuolar membrane vesicles were stimulated 3- and 1.5-fold, respectively, by the protonophore uncoupler 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile and the K+/H+ antiporter ionophore nigericin. Sodium azide at a concentration exerting an uncoupler effect also stimulated the activity. The activity was sensitive to the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to sodium vanadate. The ATP-dependent formation of an electrochemical potential difference of protons, measured by the flow-dialysis method, was determined as 180 mV, with contribution of 1.7 pH units, interior acid, and of a membrane potential of 75 mV. It is concluded that the Mg2+-ATPase of vacuoles is a new marker enzyme for these organelles and is a N,N'-dicyclohexylcarbodiimide-sensitive, H+-translocating ATPase whose catalytic site is exposed to the cytoplasm.  相似文献   

8.
The mechanism of interaction between two 3-carboxy A-ring aryl steroids, 17 beta-(N,N-diisopropylcarboxamide)-estra-1,3,5(10)-triene-3-carboxy lic acid (1) and 17 beta-(N-t-butylcarboxamide)-estra-1,3,5(10)-triene-3-carboxylic acid (2), with rat hepatic and human prostatic steroid 5 alpha-reductases has been investigated. Dead-end inhibition plots with 1 and 2 versus both substrates (testosterone and NADPH) were linear-uncompetitive using either enzyme, while double-inhibition analyses indicated cooperative binding to enzyme between NADP+ and 1 or 2. These results were interpreted within the ordered kinetic mechanism of steroid 5 alpha-reductase to result from the preferential association of 3-carboxy A-ring aryl steroids to the enzyme-NADP+ complex. The direct displacement by 2 of a radioligand known to associate to this same enzyme form provides further support for these conclusions.  相似文献   

9.
Pyrroline-5-carboxylic acid reductase from soybean leaves   总被引:1,自引:0,他引:1  
Pyrroline-5-carboxylic acid reductase was purified 40-fold from soybean leaves (Glycine max L. var Corsoy). The enzyme was fairly unstable, had a broad pH optimum, and was inactivated by heat and acid; NADH and NADPH both served as cofactors. It had a higher activity with NADH (about 4 ×) compared to NADPH, but a lower Km for NADPH. NADP+ inhibited both the NADH- and NADPH-dependent activity. Sulfhydryl group blocking agents reduced the activity as did the carbonyl blocking agent, NH2OH. Thiazolidine-4-carboxylic acid and phosphate inhibited the enzyme and proline inhibited only at high concentrations. ATP, GTP, and CTP were all effective inhibitors of both the NADH- and NADPH-dependent activity. Phosphorylated nucleotide inhibition was reversed by Mg2+ ions.  相似文献   

10.
Two membrane fractions prepared from the Ehrlich ascites-tumor cell show non-identical stimulatory responses to certain amino acids in their Mg+2 -dependent activity to cleave ATP, despite the presence of ouabain and the absence of Na+ or K+. The first of these, previously described, shows little (Na+ + K+)-ATPase activity, and is characteristicallly stimulated by the presence of certain diamino acids with low pK2, and at pH values suggesting that the cationic forms of these amino acids are effective. The evidence indicates that these effects are not obtained through occupation of the kinetically discernible receptor site serving characteristically for the uphill transport of these amino acids into the Ehrlich cell. The second membrane preparation was purified with the goal of concentrating the (Na+ +K+)-ATPase activity. It also is stimulated by the model diamino acid, 4-amino-1-methylpiperidine-4-carboxylic acid, and several ordinary amino acids. The diamino acids were most effective at pH values where the neutral zwitterionic forms might be responsible. Among the optically active amino acids tested, the effects of ornithine and leucine were substantially stronger for the L than for the D isomers. The list of stimulatory amino acids again corresponds poorly to any single transport system, although the possibility was not excluded that stimulation might occur for both preparations by occupation of a membrane site which ordinarily is kinetically silent in the transport sequence. The high sensitivity to deoxycholate and to dicyclohexylcarbodiimide of the hydrolytic activity produced by the presence of L-ornithine and 4-amino-1-methyl-piperidine-4-carboxylic acid suggests that the stimulatory effect is not merely a general intensification of the background Mg+ -dependent hydrolytic activity.  相似文献   

11.
Based on our view that cephalosporins with potent activities share active hydrogen(s) on the alpha-carbon of the side chain acyl, we undertook to introduce beta-ketoacid moieties onto the cephalosporin structure. Thus, starting with deacetylcephalosporin C (DCPC), first made available in quantities by our own fermentation technique, 7-amino-3'-O-acetoacetyldeacetylcephalosporanic acid (7-AACA) was made accesible. Acylation of 7-AACA with various beta-ketoacids followed by substitution at the 3'-position led to 7 beta-[2-(2-aminothiazol-4-yl)acetamido]-3-[[1-(2-dimethylaminoethyl)-1H-tetrazol-5-yl]thiomethyl]ceph-3-em-4-carboxylic acid (SCE-963, cefotiam), a potent broad-spectrum cephalosporin. Further elaboration of the structure of cefotiam led to an extended broad-spectrum cephalosporin, SCE-1365. These two classes of cephalosporins, together with our previously reported antipseudomonal cephalosporin (SCE-129, cefsulodin), could control a wide range of pathogenic bacteria.  相似文献   

12.
1,2-Dihydroxynaphthalene oxygenase was purified from Pseudomonas putida NCIB 9816 grown on naphthalene as the sole source of carbon and energy. The enzyme had a subunit molecular weight of 19,000 and in a medium containing phosphate buffer, 1 mM mercaptoethanol, and 10% (vol/vol) ethanol had a native molecular weight greater than 275,000. The enzyme required Fe2+ for activity. It was inactivated slowly on standing, and inactivation was accelerated by dilution with aerated buffers and by H2O2. Bathophenanthroline sulfonate, o-phenanthroline, 8-hydroxyquinoline, and 2,2'-dipyridyl also inhibited the enzyme. The inactive enzyme was reactivated by anaerobic incubation with ferrous sulfate and ferrous ammonium sulfate. Thiol reagents and acetone, ethanol, or glycerol decreased the rate of loss of activity. The enzyme was most active with 1,2-dihydroxynaphthalene, for which the Km was 2.8 X 10(-4) M. 3-Methyl- and 4-methylcatechols were oxidized at 3 and 1.5%, respectively, of the rate of 1,2-dihydroxynaphthalene, and the Km for 3-methylcatechol was 1.5 X 10(-4) M. Purified 1,2-dihydroxynaphthalene oxygenase catalyzed the oxidation of 1,2-dihydroxynaphthalene, leading to the appearance of 2-hydroxychromene-2-carboxylic acid, but 3-methylcatechol was oxidized by this enzyme to 2-hydroxy-6-oxoheptadienoic acid. Thus, a product structurally analogous to 2-hydroxychromene-2-carboxylic acid was not observed when 3-methylcatechol was oxidized. This may indicate that 2-hydroxychromene-2-carboxylic acid results from cyclization of a ring fission product before release from the enzyme.  相似文献   

13.
In addition to protease La (the lon gene product), Escherichia coli contains another ATP-dependent protease, Ti. This enzyme (approximately 340 kDa) is composed of two components, both of which are required for proteolysis. Both have been purified to homogeneity by conventional procedures using [3H]casein as the substrate. The ATP-stabilized component, A, has a subunit molecular weight of 80,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate, but it behaves as a dimer (140 kDa) upon gel filtration. Component P, which is relatively heat stable, is inactivated by diisopropyl fluorophosphate and can be labeled with [3H] diisopropyl fluorophosphate. It has a subunit size of 23 kDa, but the isolated component behaves as a complex (260 kDa) of 10-12 subunits. The isoelectric point of component A is 7.0 and that of P is 8.2, and their amino acid compositions differ considerably. The purified enzyme has an ATPase activity that is stimulated 2-4-fold by casein and other protein substrates but not by nonhydrolyzed proteins. Component A also shows ATPase activity which can be stimulated by casein. Addition of component P (which lacks ATPase activity) inhibits basal ATP hydrolysis by A and makes this ATPase more responsive to casein. Although component P contains the serine active site for proteolysis, it shows no proteolytic activity in the absence of component A, Mg2+, and ATP or dATP. Other nucleoside triphosphates are not hydrolyzed and do not support proteolysis. Protease Ti has a Km for ATP of 210 microM for hydrolysis of both casein and ATP. Casein increases the Vmax for ATP without affecting the Km. A Mg2+ concentration of 5 mM is necessary for half-maximal rates of ATP and casein hydrolysis. Ca2+ and Mn2+ partially support these activities. Thus, protease Ti shares many unusual properties with protease La (e.g. coupled ATP and protein hydrolysis and protein-activated ATPase), but these functions in protease Ti are associated with distinct subunits that modify each other's activities.  相似文献   

14.
The activity of a purified cytosolic aminopeptidase (Mr 79,000) from monkey brain was stimulated about 4-fold by ATP-Mg2+. The stimulation was seen with either synthetic aminopeptidase substrates or natural peptides such as enkephalins. Both ATP and Mg2+ were required for stimulation, and ADP did not inhibit the stimulation. Non-hydrolysable analogues of ATP, deoxy-ATP and other nucleoside triphosphates stimulated to a lesser extent compared with ATP, whereas nucleoside mono- or di-phosphates were ineffective. The enzyme did not exhibit any ATPase activity. An ATPase inhibitor, orthovanadate, had no inhibitory effect on the ATP-Mg2+ stimulation. The aminopeptidase was not autophosphorylated by [gamma-32P]ATP and Mg2+, but in the presence of cyclic AMP-dependent protein kinase underwent phosphorylation on serine residue(s). Phosphorylation resulted in inactivation of the aminopeptidase activity, and also resulted in a decreased stimulation of the enzyme by ATP-Mg2+.  相似文献   

15.
1. A prolyl-s-RNA synthetase (prolyl-transfer RNA synthetase) has been purified about 250-fold from seed of Phaseolus aureus (mung bean), a species not producing azetidine-2-carboxylic acid, and more than 10-fold from rhizome apices of Polygonatum multiflorum, a liliaceous species containing azetidine-2-carboxylic acid. The latter enzyme was unstable during ammonium sulphate fractionation. 2. The enzymes exhibited different substrate specificities towards the analogue. That from Phaseolus, when assayed by the ATP-PP(i) exchange, showed azetidine-2-carboxylic acid activation at about one-third the rate with proline. Both labelled imino acids gave rise to a labelled aminoacyl-s-RNA. The enzyme from Polygonatum, however, activated only proline. 3. The enzyme from Polygonatum also formed a labelled prolyl-s-RNA with Phaseolus s-RNA but at a lower rate than when the Phaseolus enzyme was used. No reaction occurred when the Phaseolus enzyme was coupled with Polygonatum s-RNA, and only a very slight one was observed when both enzyme and s-RNA came from Polygonatum. 4. Protein preparations from seeds of Pisum sativum, another species not producing azetidine-2-carboxylic acid, also activated the analogue in addition to proline, whereas those from rhizome and seeds of Convallaria, the species from which the analogue was originally isolated, failed to activate it. However, a liliaceous species not producing the analogue, Asparagus officinalis, activated it. 5. Of the other proline analogues investigated, only 3,4-dehydro-dl-proline and l-thiazolidine-4-carboxylic acid were active with the enzyme preparation from Phaseolus. 6. pH optima of 7.9 and 8.4 were established for the enzymes from Phaseolus and Polygonatum respectively. 7. The Phaseolus enzyme was specific for ATP and PP(i). Mn(2+) partially replaced the requirement for Mg(2+) as cofactor. Preincubation with p-chloromercuribenzoate at a concentration of 0.5mm or higher produced over 99% inhibition of the Phaseolus enzyme. One-half the enzymic activity was destroyed by preheating for 5min. at 62 degrees in tris-hydrochloric acid buffer, pH7.9. 8. All experimental evidence supports the hypothesis that azetidine-2-carboxylic acid and proline are activated by the same enzyme in Phaseolus preparations, whereas the analogue was inactive in all Polygonatum preparations. The possible nature of this different substrate behaviour is discussed.  相似文献   

16.
ATP:citrate lyase of Rhodotorula gracilis: purification and properties   总被引:2,自引:0,他引:2  
ATP:citrate lyase was purified from the oleaginous yeast Rhodotorula gracilis to homogeneity as judged by polyacrylamide gel electrophoresis, using a novel citrate-Sepharose procedure. The enzyme was found to have a molecular weight of 520,000 and consisted of four identical subunits (Mr = 120,000). Two minor low molecular weight bands were observed on SDS-PAGE (Mr 51,000 and 49,000). Trypsin digestion experiments indicated that these could have been the result of limited proteolysis by an endogenous trypsin-like proteinase. In this respect, it resembles the mammalian ATP:citrate lyase. The enzyme was stimulated by NH+4 ions and inhibited by palmitoyl, lauroyl, oleoyl, myristoyl and stearoyl-CoA esters, glutamate and glucose 6-phosphate but not by acetyl-CoA or shorter chain fatty acyl-CoA esters. The enzyme exhibited normal Michaelis-Menten kinetics for citrate; however there was a 3-fold increase in Km with a high concentration of Cl- ions (0.25 M). The possible regulatory roles of ATP:citrate lyase in R. gracilis are discussed in the light of these findings.  相似文献   

17.
The acetate activating system of Acetobacter aceti has been studied. The enzyme responsible, acetyl-CoA synthetase, has been purified about 500-fold from crude cell extracts and was approximately 85% pure as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. The purified enzyme showed optimal activity at pH 7.6 in both Tris-HCL and potassium phosphate buffers. In its purest form, the enzyme was stable at 4 degrees-C but denatured upon freezing. The Km values for CoA, ATP and acetate were found to be 0.104 mM, 0.36 mM and 0.25 mM respectively; propionate and acrylate were also activated by the enzyme but not butyrate, isobutyrate or valerate. GTP, UTP, CTP and ADP could not replace ATP in the reaction, and cysteine or pantetheine failed to replace CoA. The cationic requirements were studied and of the divalent cations tested, only Mn2+ could significantly replace Mg2+ in the reaction; K+ and NH4+ stimulated enzyme activity but inhibited at high concentrations; Na+ was a poor activator, but did not inhibit at higher concentrations. The effect of a number of glucose and other metabolites on enzyme activity has been tested.  相似文献   

18.
5-Oxo-L-prolinase, an enzyme that catalyzes the conversion of 5-oxo-L-proline (L-pyroglutamate; L-2-pyrrolidone-5-carboxylate) to L-glutamate coupled with the cleavage of ATP to ADP and Pi, has been purified about 1600-fold from rat kidney. Purification was carried out in the presence of 5-oxo-L-proline which protects the enzyme under a variety of conditions. An estimate of the molecular weight (about 325,000) was made by gel filtration on Sephadex G-200. K+ (or NH4+) and Mg2+ were required for activity. GTP, ITP, CTP, and UTP were much less active than ATP; dATP was 43% as active as ATP. ADP inhibited and addition of pyruvate kinase and phosphoenolpyruvate activated the reaction. The enzyme, which is protected during storage by dithiothreitol, is inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide, and iodoacetamide. The apparent Km values for 5-oxo-L-proline and ATP are, respectively, 0.05 and 0.17 mM. The pH profile indicates a broad range of activity from about pH 5.5 to pH 11.2 with apparent maxima at about pH 7 and pH 9.7. The formation of Pi and glutamate was equimolar over a wide pH range. When the enzyme was incubated with ATP, Mg2+, K+, and L-2-imidazolidone-4-carboxylate or L-dihydroorotate, cleavage of ATP to ADP and Pi occurred, but no cleavage of the imino acid substrates was observed; when the enzyme was incubated under these conditions with 2-piperidone-6-carboxylate, 4-oxy-5-oxoproline, and 3-oxy-5-oxoproline, the corresponding dicarboxylic amino acids were formed, but the molar ratio of Pi to amino acid formation was significantly greater than unity.  相似文献   

19.
G.D. Webster  J.B. Jackson 《BBA》1978,503(1):135-154
1. ATPase isolated from Rhodospirillum rubrum by chloroform extraction and purified by gel filtration or affinity chromatography shows three bands (α, β and γ) upon electrophoresis in sodium dodecyl sulphate.2. Ca2+-ATPase activity of the preparation is inhibited by aurovertin and efrapeptin but not by oligomycin. Activity may be inhibited by treatment with 4-chloro-7-nitrobenzofurazan and subsequently restored by dithiothreitol.3. The enzyme fails to reconstitute photophosphorylation in chromatophores depleted of ATPase by sonic irradiation.4. Most of the active protein from the crude chloroform extract binds to an affinity chromatography column bearing an immobilised ADP analogue but not to a column bearing immobilised pyrophosphate.5. In the absence of divalent cations, a component with a very high specific activity for Ca2+-ATPase is eluted from the column by 1.6 mM ATP. This protein migrates as a single band on 5% polyacrylamide gel electrophoresis and only possesses three subunits. At 12 mM ATP an inactive protein is eluted which does not run on acid or alkali polyacrylamide gels and shows a complex subunit structure.6. ATPase preparations prepared by acetone extraction or by sonic irradiation of chromatophores may also be purified 10-fold by affinity chromatography.7. The inclusion of 5 mM MgCl2 or CaCl2 during affinity chromatography of chloroform ATPase increases the capacity of the column for the enzyme and demands a higher eluting concentration of ATP.8. When the enzyme is more than 90% inhibited by efrapeptin or 4-chloro-7-nitrobenzofurazan, the binding characteristics of the enzyme are not affected.9. 10 mM Na2SO3, which greatly stimulates the Ca2+- and Mg2+-dependent ATPase activity of the enzyme and increases Ki (ADP) for Ca2+-ATPase from 50 to 850 μM, prevents binding to the affinity column. Binding may be restored by the addition of divalent cations.10. Na2SO3 increases the rate of ATP hydrolysis, ATP-driven H+ translocation and ATP-driven transhydrogenase in chromatophores.11. It is proposed that anions such as sulphite convert the chromatophore ATPase into a form which is a more efficient energy transducer.  相似文献   

20.
Carbapenam synthetase (hereafter named CPS) catalyzes the formation of the beta-lactam ring in the biosynthetic pathway to (5R)-carbapen-2-em-3-carboxylate, the simplest of the carbapenem antibiotics. Kinetic studies showed remarkable tolerance to substrate stereochemistry in the turnover rate but did not distinguish between chemistry and a nonchemical step such as product release or conformational change as being rate-determining. Also, X-ray structural studies and modest sequence homology to beta-lactam synthetase, an enzyme that catalyzes the formation of a monocyclic beta-lactam ring in a similar ATP/Mg2+-dependent reaction, implicate K443 as an essential residue for substrate binding and intermediate stabilization. In these experiments, we use pH-rate profiles, deuterium solvent isotope effects, and solvent viscosity measurements to examine the rate-limiting step in this complex overall process of substrate adenylation and intramolecular ring formation. Mutagenesis and chemical rescue demonstrate that K443 is the general acid visible in the pH-rate profile of the wild-type CPS-catalyzed reaction. On the basis of these results, we propose a mechanism in which the rate-limiting step is beta-lactam ring formation coupled to a protein conformational change and underscore the role of K443 throughout the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号