首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In C. elegans, a Wnt/WG-like signaling pathway down-regulates the TCF/LEF-related protein, POP-1, to specify posterior cell fates. Effectors of this signaling pathway include a beta-catenin homolog, WRM-1, and a conserved protein kinase, LIT-1. WRM-1 and LIT-1 form a kinase complex that can directly phosphorylate POP-1, but how signaling activates WRM-1/LIT-1 kinase is not yet known. Here we show that mom-4, a genetically defined effector of polarity signaling, encodes a MAP kinase kinase kinase-related protein that stimulates the WRM-1/LIT-1-dependent phosphorylation of POP-1. LIT-1 kinase activity requires a conserved residue analogous to an activating phosphorylation site in other kinases, including MAP kinases. These findings suggest that anterior/posterior polarity signaling in C. elegans may involve a MAP kinase-like signaling mechanism.  相似文献   

3.
During C. elegans development, Wnt/WG signaling is required for differences in cell fate between sister cells born from anterior/posterior divisions. A beta-catenin-related gene, wrm-1, and the lit-1 gene are effectors of this signaling pathway and appear to downregulate the activity of POP-1, a TCF/LEF-related protein, in posterior daughter cells. We show here that lit-1 encodes a serine/threonine protein kinase homolog related to the Drosophila tissue polarity protein Nemo. We demonstrate that the WRM-1 protein binds to LIT-1 in vivo and that WRM-1 can activate the LIT-1 protein kinase when coexpressed in vertebrate tissue culture cells. This activation leads to phosphorylation of POP-1 and to apparent changes in its subcellular localization. Our findings provide evidence for novel regulatory avenues for an evolutionarily conserved Wnt/WG signaling pathway.  相似文献   

4.
In the canonical Wnt pathway, signaling results in the stabilization and increased levels of β-catenin in responding cells. β-catenin then enters the nucleus, functioning as a coactivator for the Wnt effector, TCF/LEF protein. In the absence of Wnt signaling, TCF is complexed with corepressors, together repressing Wnt target genes. In C. elegans, Wnt signaling specifies the E blastomere to become the endoderm precursor. Activation of endoderm genes in E requires not only an increase in β-catenin level, but a concomitant decrease in the nuclear level of POP-1, the sole C. elegans TCF. A decrease in nuclear POP-1 levels requires Wnt-induced phosphorylation of POP-1 and 14-3-3 protein-mediated nuclear export. Nuclear POP-1 levels remain high in the sister cell of E, MS, where POP-1 represses the expression of endoderm genes. Here we express three vertebrate TCF proteins (human TCF4, mouse LEF1 and Xenopus TCF3) in C. elegans embryos and compare their localization, repression and activation functions to POP-1. All three TCFs are localized to the nucleus in C. elegans embryos, but none undergoes Wnt-induced nuclear export. Although unable to undergo Wnt-induced nuclear export, human TCF4, but not mouse LEF1 or Xenopus TCF3, can repress endoderm genes in MS, in a manner very similar to POP-1. This repressive activity requires that human TCF4 recognizes specific promoter sequences upstream of endoderm genes and interacts with C. elegans corepressors. Domain swapping identified two regions of POP-1 that are sufficient to confer nuclear asymmetry to human TCF4 when swapped with its corresponding domains. Despite undergoing Wnt-induced nuclear export, the human TCF4/POP-1 chimeric protein continues to function as a repressor for endoderm genes in E, a result we attribute to the inability of hTCF4 to bind to C. elegans β-catenin. Our results reveal a higher degree of species specificity among TCF proteins for coactivator interactions than for corepressor interactions, and uncover a basic difference between how POP-1 and human TCF4 steady state nuclear levels are regulated.  相似文献   

5.
6.
The three Caenorhabditis elegans beta-catenin each function in distinct processes: BAR-1 in canonical Wnt signaling that controls cell fates and cell migrations, HMP-2 in cell adhesion and WRM-1 in Wnt signaling pathways that function in conjunction with a mitogen-activated kinase (MAPK) pathway to control the orientations, or cell polarities, of cells that undergo asymmetric cell divisions. In addition, WRM-1 does not interact with the canonical beta-catenin binding site in POP-1/Tcf. Thus, Wnt signaling through WRM-1 is noncanonical and, except for one division that might not include any of the three C. elegans beta-catenin, controls cell polarity in C. elegans.  相似文献   

7.
In Caenorhabditis elegans, Wnt signaling pathways are important in controlling cell polarity and cell migrations. In the embryo, a novel Wnt pathway functions through a (beta)-catenin homolog, WRM-1, to downregulate the levels of POP-1/Tcf in the posterior daughter of the EMS blastomere. The level of POP-1 is also lower in the posterior daughters of many anteroposterior asymmetric cell divisions during development. I have found that this is the case for of a pair of postembryonic blast cells in the tail. In wild-type animals, the level of POP-1 is lower in the posterior daughters of the two T cells, TL and TR. Furthermore, in lin-44/Wnt mutants, in which the polarities of the T cell divisions are frequently reversed, the level of POP-1 is frequently lower in the anterior daughters of the T cells. I have used a novel RNA-mediated interference technique to interfere specifically with pop-1 zygotic function and have determined that pop-1 is required for wild-type T cell polarity. Surprisingly, none of the three C. elegans (beta)-catenin homologs appeared to function with POP-1 to control T cell polarity. Wnt signaling by EGL-20/Wnt controls the migration of the descendants of the QL neuroblast by regulating the expression the Hox gene mab-5. Interfering with pop-1 zygotic function caused defects in the migration of the QL descendants that mimicked the defects in egl-20/Wnt mutants and blocked the expression of mab-5. This suggests that POP-1 functions in the canonical Wnt pathway to control QL descendant migration and in novel Wnt pathways to control EMS and T cell polarities.  相似文献   

8.
9.
10.
Sugioka K  Mizumoto K  Sawa H 《Cell》2011,146(6):942-954
Extrinsic signals received by a cell can induce remodeling of the cytoskeleton, but the downstream effects of cytoskeletal changes on gene expression have not been well studied. Here, we show that during telophase of an asymmetric division in C. elegans, extrinsic Wnt signaling modulates spindle structures through APR-1/APC, which in turn promotes asymmetrical nuclear localization of WRM-1/β-catenin and POP-1/TCF. APR-1 that localized asymmetrically along the cortex established asymmetric distribution of astral microtubules, with more microtubules found on the anterior side. Perturbation of the Wnt signaling pathway altered this microtubule asymmetry and led to changes in nuclear WRM-1 asymmetry, gene expression, and cell-fate determination. Direct manipulation of spindle asymmetry by laser irradiation altered the asymmetric distribution of nuclear WRM-1. Moreover, laser manipulation of the spindles rescued defects in nuclear POP-1 asymmetry in wnt mutants. Our results reveal a mechanism in which the nuclear localization of proteins is regulated through the modulation of microtubules.  相似文献   

11.
In C. elegans, Wnt signaling regulates a number of asymmetric cell divisions. During telophase, WRM-1/beta-catenin localizes asymmetrically to the anterior cortex and the posterior daughter's nucleus. However, cortical WRM-1's functions are not known. Here, we use a membrane-targeted form of WRM-1 to show that cortical WRM-1 inhibits Wnt signaling and the nuclear localization of WRM-1. These functions are mediated by APR-1/APC, which regulates WRM-1 nuclear export. We also show that APR-1 as well as PRY-1/Axin and Dishevelled homologs localize asymmetrically to the cortex. Our results suggest a model in which cortical WRM-1 recruits APR-1 to the anterior cortex before and during division, and the cortical APR-1 stimulates WRM-1 export from the anterior nucleus at telophase. Because beta-catenin and APC are localized to the cortex in many cell types in different species, our results suggest that these cortical proteins may regulate asymmetric divisions or Wnt signaling in other organisms as well.  相似文献   

12.
13.
14.
15.
beta-Catenin signaling determines the proximal-distal axis of the C. elegans gonad by promoting distal fate in asymmetrically dividing somatic gonad precursor cells (SGPs). Impaired function of the Wnt effector POP-1/TCF, its coactivator SYS-1/beta-catenin, and of upstream components including beta-catenin WRM-1 causes all SGP daughters to adopt the proximal fate. Consequently, no distal tip cells (DTCs) that would lead differentiation of gonad arms form in the affected hermaphrodites. Here, we show that deficiency of the nuclear receptor NHR-25 has the opposite effect: extra DTCs develop instead of proximal cells. NHR-25 knockdown restores DTC formation and fertility in pop-1 and sys-1 mutants, suggesting that a balance between NHR-25 and beta-catenin pathway activities is required to establish both proximal and distal fates. This balance relies on direct crossregulation between NHR-25 and the distinct beta-catenin proteins WRM-1 and SYS-1. The nuclear receptor-beta-catenin interaction may be an ancient mechanism of cell-fate decision.  相似文献   

16.
17.
18.
19.
C. elegans embryos exhibit an invariant lineage comprised primarily of a stepwise binary diversification of anterior-posterior (A-P) blastomere identities. This binary cell fate specification requires input from both the Wnt and MAP kinase signaling pathways. The nuclear level of the TCF protein POP-1 is lowered in all posterior cells. We show here that the beta-catenin SYS-1 also exhibits reiterated asymmetry throughout multiple A-P divisions and that this asymmetry is reciprocal to that of POP-1. Furthermore, we show that SYS-1 functions as a coactivator for POP-1, and that the SYS-1-to-POP-1 ratio appears critical for both the anterior and posterior cell fates. A high ratio drives posterior cell fates, whereas a low ratio drives anterior cell fates. We show that the SYS-1 and POP-1 asymmetries are regulated independently, each by a subset of genes in the Wnt/MAP kinase pathways. We propose that two genetic pathways, one increasing SYS-1 and the other decreasing POP-1 levels, robustly elevate the SYS-1-to-POP-1 ratio in the posterior cell, thereby driving A-P differential cell fates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号