首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach to the pre-column derivatization and analysis of amino acids is described. The method is based upon formation of a phenylthiocarbamyl derivative of the amino acids. The derivatization method is rapid, efficient, sensitive, and specific for the analysis of primary and secondary amino acids in protein hydorlyzates. The liquid chromatographic system allows for the rapid, bonded-phase separation with ultraviolet detection of the common amino acids with 12-min analysis time and a 1-pmol sensitivity.  相似文献   

2.
A method is described for the conversion of secondary amino acids to primary amines which can be assayed with fluorescamine (I). Secondary amino acids undergo oxidative decar?ylation when reacted with halogenating agents. The resulting imines are hydrolyzed to primary amines, which are subsequently allowed to react with fluorescamine (I) to yield fluorescent pyrrolinones (II). This reaction sequence provides an efficient fluorometric assay for secondary amino acids. Thus, the fluorescamine procedure is now applicable to the full array of natural amino acids.  相似文献   

3.
The advent of full genome sequences provides exceptionally rich data sets to explore molecular and evolutionary mechanisms that shape divergence among and within genomes. In this study, we use multivariate analysis to determine the processes driving genome-wide patterns of amino usage in the obligate endosymbiont Buchnera and its close free-living relative Escherichia coli. In the AT-rich Buchnera genome, the primary source of variation in amino acid usage differentiates high- and low-expression genes. Amino acids of high-expression Buchnera genes are generally less aromatic and use relatively GC-rich codons, suggesting that selection against aromatic amino acids and against amino acids with AT-rich codons is stronger in high-expression genes. Selection to maintain hydrophobic amino acids in integral membrane proteins is a primary factor driving protein evolution in E. coli but is a secondary factor in Buchnera. In E. coli, gene expression is a secondary force driving amino acid usage, and a correlation with tRNA abundance suggests that translational selection contributes to this effect. Although this and previous studies demonstrate that AT mutational bias and genetic drift influence amino acid usage in Buchnera, this genome-wide analysis argues that selection is sufficient to affect the amino acid content of proteins with different expression and hydropathy levels.  相似文献   

4.
An amino acid analysis method using a commercially available analyzer that accurately quantitates protein-derived amino acids in the 10-100 pmol range is described. The method utilizes the robotic capability of the analyzer's autosampler to perform precolumn derivatization of both primary and secondary amino acids with o-phthalaldehyde and 9-fluorenylmethyl chloroformate, respectively. The derivatized amino acids are then separated on a C-18 reverse-phase amino acid column and quantitated in a single run by fluorescence detection. The characterization of beta-lactoglobulin and two tryptic peptides from the bacterial enzyme diaminopimelic acid epimerase is used to demonstrate the sensitivity and utility of this method.  相似文献   

5.
The fluorometric amino acid analyzer based on fluorescamine has been utilized for quantitative determination of Nα-methylamino acids. N-Chlorosuccinimide (1 × 10?3m in 0.05 m HCl) was continuously introduced into the column eluate to convert Nα-methylamino acids to fluorescamine-sensitive methylamine. As little as 100 pmoles of l-N-methylalanine was detectable with a linear fluorescence response up to 10.0 nmoles. Distinction of primary and secondary amino acids was achieved by carrying out duplicate analyses with and without the introduction of the N-chlorosuccinimide solution.  相似文献   

6.
Ion-exchange chromatography (IEC) is the most widely used method for amino acid analysis in physiological fluids because it provides excellent separation and reproducibility, with minimal sample preparation. The disadvantage, however, is the long analysis time needed to chromatographically resolve all the amino acids. To overcome this limitation, we evaluated a novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method, which utilizes aTRAQ reagents, for amino acid analysis in urine. aTRAQ reagents tag the primary and secondary amino groups of amino acids. Internal standards for each amino acid are also labeled with a modified aTRAQ tag and are used for quantification. Separation and identification of the amino acids is achieved by liquid chromatography tandem mass spectrometry using retention times and mass transitions, unique to each amino acid, as identifiers. The run time, injection-to-injection, is 25 min, with all amino acids eluting within the first 12 min. This method has a limit of quantification (LOQ) of 1 μmol/L, and is linear up to 1000 μmol/L for most amino acids. The Coefficient of Variation (CV) was less than 20% for all amino acids throughout the linear range. Method comparison demonstrated concordance between IEC and LC-MS/MS and clinical performance was assessed by analysis of samples from patients with known conditions affecting urinary amino acid excretion. Reference intervals established for this method were also concordant with reference intervals obtained with IEC. Overall, aTRAQ reagents used in conjunction with LC-MS/MS should be considered a comparable alternative to IEC. The most attractive features of this methodology are the decreased run time and increased specificity.  相似文献   

7.
A method for comparison of protein sequences based on their primary and secondary structure is described. Protein sequences are annotated with predicted secondary structures (using a modified Chou and Fasman method). Two lettered code sequences are generated (Xx, where X is the amino acid and x is its annotated secondary structure). Sequences are compared with a dynamic programming method (STRALIGN) that includes a similarity matrix for both the amino acids and secondary structures. The similarity value for each paired two-lettered code is a linear combination of similarity values for the paired amino acids and their annotated secondary structures. The method has been applied to eight globin proteins (28 pairs) for which the X-ray structure is known. For protein pairs with high primary sequence similarity (greater than 45%), STRALIGN alignment is identical to that obtained by a dynamic programming method using only primary sequence information. However, alignment of protein pairs with lower primary sequence similarity improves significantly with the addition of secondary structure annotation. Alignment of the pair with the least primary sequence similarity of 16% was improved from 0 to 37% 'correct' alignment using this method. In addition, STRALIGN was successfully applied to seven pairs of distantly related cytochrome c proteins, and three pairs of distantly related picornavirus proteins.  相似文献   

8.
Using certain assumptions, an attempt has been made to obtain a quantitative evaluation of the similarity of the bulk amino acid compositions of various organisms and of the quantitative ratios of amino acids in the products of the presumable prebiological ructions and in the natural proteins. The results of comparison between the molar ratios of amino acids in synthesized products and in natural proteins and the quantitative distribution of triplets among amino acids in the existing genetic code are given. Proceeding from the correlations found and the data reported in literature, a concept has been suggested amounting, in essence, to the assertion that the structure of the genetic code (the quantitative distribution of the triplets) is in a certain way determined by the pre-existing, primary ratio (archaeorelation) of amino acids.  相似文献   

9.
This work describes a method for the simultaneous determination of primary d- and l-amino acids and secondary amino acids such as d- and l-proline. In order to remove interferences in the simultaneous determination of primary and secondary amines, the primary amines were derivatized with o-phthalaldehyde/N-acetyl-l-cysteine (OPA/NAC) and subsequently with 1-(9-fluorenyl)ethyl chloroformate (FLEC) for secondary amines, in a pre-column separation derivatization technique. These fluorescent diastereomers of the amino acids were obtained within 3 min at room temperature and determined simultaneously by changing wavelengths during analysis in a single eluting run in the high-performance liquid chromatography column. This method, referred to as the “two-step labelling method,” is effective for the simultaneous determination of d- and l-amino acids.  相似文献   

10.
A detailed study has been made of the kinetics of interaction between amino acids and esters of amino acids and o-phthaldialdehyde in the presence of mercaptoethanol. The reaction products have been characterized. A spectrophotometric method for quantitative analysis of all amino acids, except proline and hydroxyproline, has been developed. The possibility of determination of amino acid esters in mixtures containing free amino acids has been demonstrated. It is noted that determination of glycine and histidine with the help of o-phthaldialdehyde has certain specificities associated with faster, compared to other amino acids, degradation of their derivatives. Optimal conditions for quantitative analysis of amino acids in solutions of higher than 10?5m concentration are recommended. The reproducibility of the determination was ±2%.  相似文献   

11.
The secondary structure implications of precipitation induced by a chaotropic salt, KSCN, and a structure stabilizing salt, Na2SO4, were studied for twelve different proteins. α-helix and β-sheet content of precipitate and native structures were estimated from the analysis of amide I band Raman spectra. A statistical analysis of the estimated perturbations in the secondary structure contents indicated that the most significant event is the formation of β-sheet structures with a concomitant loss of α-helix on precipitation with KSCN. The conformational changes for each protein were also analyzed with respect to elements of primary, secondary and tertiary structure existing in the native protein; primary structure was quantified by the fractions of hydrophobic and charged amino acids, secondary structure by x-ray estimates of α-helix and β-sheet contents of native proteins and tertiary structure by the dipole moment and solvent-accessible surface area. For the KSCN precipitates, factors affecting β-sheet content included the fraction of charged amino acids in the primary sequence and the surface area. Changes in α-helix content were influenced by the initial helical content and the dipole moment. The enhanced β-sheet contents of precipitates observed in this work parallel protein structural changes occurring in other aggregative phenomena.  相似文献   

12.
Profiling of metabolites is a rapidly expanding area of research for resolving metabolic pathways. Metabolic fingerprinting in medicinally important plants is critical to establishing the quality of herbal medicines. In the present study, metabolic profiling of crude extracts of leaf and root of Withania somnifera (Ashwagandha), an important medicinal plant of Indian system of medicine (ISM) was carried out using NMR and chromatographic (HPLC and GC-MS) techniques. A total of 62 major and minor primary and secondary metabolites from leaves and 48 from roots were unambiguously identified. Twenty-nine of these were common to the two tissues. These included fatty acids, organic acids, amino acids, sugars and sterol based compounds. Eleven bioactive sterol-lactone molecules were also identified. Twenty-seven of the identified metabolites were quantified. Highly significant qualitative and quantitative differences were noticed between the leaf and root tissues, particularly with respect to the secondary metabolites.  相似文献   

13.
To investigate the role of the critical parameters in adaptation of proteins to low temperatures, a comparative systematic analysis was performed. Several parameters were proposed to have contribution to cold adaptation of proteins. Among proposed parameters, total values of residual structure states, secondary structure states and oligomeric states were alike in both psychrophilic and mesophilic proteins. In addition, our results provided new quantitative information about the trends in the substitution preference of Ile, Phe, Tyr, Lys, Arg, His, Glu and Leu with most of amino acids and substitution avoidance of Gly, Thr and Ala with most of amino acids. These findings would help future efforts propose a strategy for designing psychrophilic proteins.  相似文献   

14.
A simple and fast reversed-phase high-performance liquid chromatographic method has been developed for the complete separation of 35 dimethylaminoazobenzene sulfonyl (DABS)-amino acids and by-products. This method allows simultaneous determination of primary and secondary amino acids which can be present in protein and peptide hydrolysates and also detects the presence of cysteic acid, S-sulfocysteine, hydroxyproline, taurine, norleucine, cystine, and delta-hydroxylysine. The precolumn derivatization of amino acids with dimethylaminoazobenzene sulfonyl chloride (DABS-Cl) is simple and quick (10 min at 70 degrees C) and allows the complete reaction of primary and secondary amino acids. The separation of the compounds under investigation is achieved in 25 min using a reversed-phase 3-microns Supelcosil LC-18 column at room temperature. The versatility of the proposed method is documented by amino acid determination on protein samples obtained using different hydrolysis techniques (HCl, methane-sulfonic acid, and NaOH), with attention given to the detection of tryptophan in protein samples with high sugar concentration. Furthermore, we have reported the experimental conditions necessary to apply this method to the amino acid analysis of very low amount of proteins (1 to 5 micrograms) electroeluted from a stained band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The stability of DABS-derivatives, the short time of analysis, the high reproducibility and sensitivity of the system, and the complete resolution of all compounds of interest make this method suitable for routine analysis. Furthermore, we have also developed a fast reversed-phase high-performance liquid chromatographic method for the complete separation of dimethylaminoazobenzene thiohydantoin (DABTH)-amino acids. The separation of the compounds under investigation is obtained, at room temperature, in less than 18 min using a reversed-phase Supelcosil LC-18 DB column, 3-micron particles, and also allows the complete separation of DABTH-Ile, DABTH-Leu, and DABTH-Norleu. The short time of analysis, together with the high reproducibility of the system and its sensitivity at picomole levels, make this method very suitable for the identification of DABTH-amino acids released during microsequencing studies of proteins and peptides with the dimethylaminoazobenzene isothiocyanate reagent. In addition, we have shown that it is possible to obtain complete separation of DABTH-amino acids also under isocratic conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The reactions of hydrated electrons (eaq-) with 55 dipeptides and 25 acetyl and formyl amino acids have been studied by e.s.r. and spin-trapping techniques. Gamma-radiolysis of deaerated aqueous solutions was used to generate eaq-, and sodium formate or t-BuOH was added to scavenge the OH radicals. t-Nitrosobutane was employed as the spin-trapping reagent. The radical,--CO---NH--, which is the initial product of the reactions of eaq- with dipeptides, was observed only for val-gly, val-ala, val-leu and ile-ala. For most of the dipeptides this radical converts to the primary deamination radical, CHR'-CONH-CHR-COO-, where R and R' are the side-chains of the common amino acids. In many cases a radical of the type CHR-COO-, formed by secondary deamination, was also observed. Only secondary deamination reactions were observed for dipeptides containing beta-alanine as the amino terminal residue and for acetyl and formyl amino acids. The secondary deamination reactions of eaq- with dipeptides, acetyl and formyl amino acids in aqueous solutions have not been observed previously. This type of reaction is of interest since it brings about main-chain scission in polypeptides and proteins.  相似文献   

16.
Using the data from Protein Data Bank the correlations of primary and secondary structures of proteins were analyzed. The correlation values of the amino acids and the eight secondary structure types were calculated, where the position of the amino acid and the position in sequence with the particular secondary structure differ at most 25. The diagrams describing these results indicate that correlations are significant at distances between −9 and 10. The results show that the substituents on Cβ or Cγ atoms of amino acid play major role in their preference for particular secondary structure at the same position in the sequence, while the polarity of amino acid has significant influence on α-helices and strands at some distance in the sequence. The diagrams corresponding to polar amino acids are noticeably asymmetric. The diagrams point out the exchangeability of residues in the proteins; the amino acids with similar diagrams have similar local folding requirements. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
In high density cultivation of Spodoptera frugiperda (Sf9) cells in Grace's medium supplemented with FBS (fetal bovine serum) and yeastolate, amino acids were the primary limiting substrates while the carbon sources were not. Glutamine, methionine, and threonine were consumed rapidly during the cultivation. When cultures were supplemented with amino acids, yeastolate components other than amino acids became the secondary limiting substrates.  相似文献   

18.
Non-ribosomal peptides are a group of secondary metabolites with a wide range of bioactivities, produced by prokaryotes and lower eukaryotes. Recently, non-ribosomal synthesis has been detected in diverse microorganisms, including the myxobacteria and cyanobacteria. Peptides biosynthesized non-ribosomally may often play a primary or secondary role in the producing organism. Non-ribosomal peptides are often small in size and contain unusual or modified amino acids. Biosynthesis occurs via large modular enzyme complexes, with each module responsible for the activation and thiolation of each amino acid, followed by peptide bond formation between activated amino acids. Modules may also be responsible for the enzymatic modification of the substrate amino acid. Recent analysis of biosynthetic gene clusters has identified novel integrated, mixed and hybrid enzyme systems. These diverse mechanisms of biosynthesis result in the wide variety of non-ribosomal peptide structures and bioactivities seen today. Knowledge of these biosynthetic systems is rapidly increasing and methods of genetically engineering these systems are being developed. In the future, this may lead to rational drug design through combinatorial biosynthesis of these enzyme systems.  相似文献   

19.
Dixit  Deeksha  Srivastava  N.K. 《Photosynthetica》2000,38(2):275-280
Incorporation of photosynthetically fixed 14C was studied at different time intervals of 12, 24, and 36 h in various plant parts—leaf 1 to 4 from apex, roots, and rhizome—into primary metabolites—sugars, amino acids, and organic acids, and secondary metabolites—essential oil and curcumin—in turmeric. The youngest leaves were most active in fixing 14C at 24 h. Fixation capacity into primary metabolites decreased with leaf position and time. The primary metabolite levels in leaves were maximal in sugars and organic acids and lowest in amino acids. Roots as well as rhizome received maximum photoassimilate from leaves at 24 h; this declined with time. The maximum metabolite concentrations in the roots and rhizome were high in sugars and organic acids and least in amino acids. 14C incorporation into oil in leaf and into curcumin in rhizome was maximal at 24 h and declined with time. These studies highlight importance of time-dependent translocation of 14C-primary metabolites from leaves to roots and rhizome and their subsequent biosynthesis into secondary metabolite, curcumin, in rhizome. This might be one of factors regulating the secondary metabolite accumulation and rhizome development.  相似文献   

20.
Although ion exchange chromatography has been used in separating amino acids from mineral salts, quantitative recovery has not been possible for the basic amino acids or for subnanomole concentrations of amino acids.As an analytical tool for amino acid analysis, ion-exchange chromatography has made it possible to resolve a relatively complex mixture of amino acids in less than an hour with detection limits of less than 10–12 moles of amino acids. Reasonable specificity for amino acids is achieved by multiple wavelength detection of the reaction product found with ninhydrin. Unequivocal specificity must be obtained in conjunction with other methods such as mass spectrometry.In the analysis of subnanomole levels of amino acids, it is necessary to carry both reagent blanks and low-level amino acid standards through the entire sample preparation step since both contamination and selective losses occur and must be monitored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号