首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous firing properties of individual auditory cortical neurons are interpreted in terms of local and global order present in functioning brain networks, such as alternating “up” and “down” states. A four-state modulated Markov process is used to model neuronal firings. The system alternates between a bound and an unbound state, both with Poisson-distributed lifetimes. During the unbound state, active and closed states alternate with Poisson-distributed lifetimes. Inside the active state, spikes are generated as a realization of a Poisson process. This combination of processes constitutes a four-state modulated Markov process, determined by five independent parameters. Analytical expressions for the probability density functions (pdfs) that describe the interspike interval (ISI) distribution and autocorrelation function are derived. The pdf for the ISI distribution is shown to be a linear combination of three exponential functions and is expressed through the five system parameters. Through fitting experimental ISI histograms by the theoretical ones, numerical values of the system parameters are obtained for the individual neurons. Both Monte Carlo simulations and goodness-of-fit tests are used to validate the fitting procedure. The values of the estimated system parameters related to the active-closed and bound–unbound processes and their independence on the neurons’ mean firing rate suggest that the underlying quasi-periodic processes reflect properties of the network in which the neurons are embedded. The characteristic times of autocorrelations, determined by the bound–unbound and active-closed processes, are also independent of the neuron’s firing rate. The agreement between experimental and theoretical ISI histograms and autocorrelation functions allows interpretation of the system parameters of the individual neurons in terms of slow and delta waves, and high-frequency oscillations observed in cortical networks. This procedure can identify and track the influence of changing brain states on the single-unit firing patterns in experimental animals.  相似文献   

2.
 In this paper, we study the combined dynamics of the neural activity and the synaptic efficiency changes in a fully connected network of biologically realistic neurons with simple synaptic plasticity dynamics including both potentiation and depression. Using a mean-field of technique, we analyzed the equilibrium states of neural networks with dynamic synaptic connections and found a class of bistable networks. For this class of networks, one of the stable equilibrium states shows strong connectivity and coherent responses to external input. In the other stable equilibrium, the network is loosely connected and responds non coherently to external input. Transitions between the two states can be achieved by positively or negatively correlated external inputs. Such networks can therefore switch between their phases according to the statistical properties of the external input. Non-coherent input can only “rcad” the state of the network, while a correlated one can change its state. We speculate that this property, specific for plastic neural networks, can give a clue to understand fully unsupervised learning models. Received: 8 August 1999 / Accepted in revised form: 16 March 2000  相似文献   

3.
Dynamical behavior of a biological neuronal network depends significantly on the spatial pattern of synaptic connections among neurons. While neuronal network dynamics has extensively been studied with simple wiring patterns, such as all-to-all or random synaptic connections, not much is known about the activity of networks with more complicated wiring topologies. Here, we examined how different wiring topologies may influence the response properties of neuronal networks, paying attention to irregular spike firing, which is known as a characteristic of in vivo cortical neurons, and spike synchronicity. We constructed a recurrent network model of realistic neurons and systematically rewired the recurrent synapses to change the network topology, from a localized regular and a “small-world” network topology to a distributed random network topology. Regular and small-world wiring patterns greatly increased the irregularity or the coefficient of variation (Cv) of output spike trains, whereas such an increase was small in random connectivity patterns. For given strength of recurrent synapses, the firing irregularity exhibited monotonous decreases from the regular to the random network topology. By contrast, the spike coherence between an arbitrary neuron pair exhibited a non-monotonous dependence on the topological wiring pattern. More precisely, the wiring pattern to maximize the spike coherence varied with the strength of recurrent synapses. In a certain range of the synaptic strength, the spike coherence was maximal in the small-world network topology, and the long-range connections introduced in this wiring changed the dependence of spike synchrony on the synaptic strength moderately. However, the effects of this network topology were not really special in other properties of network activity. Action Editor: Xiao-Jing Wang  相似文献   

4.
5.
We describe and analyze a model for a stochastic pulse-coupled neuronal network with many sources of randomness: random external input, potential synaptic failure, and random connectivity topologies. We show that different classes of network topologies give rise to qualitatively different types of synchrony: uniform (Erdős–Rényi) and “small-world” networks give rise to synchronization phenomena similar to that in “all-to-all” networks (in which there is a sharp onset of synchrony as coupling is increased); in contrast, in “scale-free” networks the dependence of synchrony on coupling strength is smoother. Moreover, we show that in the uniform and small-world cases, the fine details of the network are not important in determining the synchronization properties; this depends only on the mean connectivity. In contrast, for scale-free networks, the dynamics are significantly affected by the fine details of the network; in particular, they are significantly affected by the local neighborhoods of the “hubs” in the network.  相似文献   

6.
A neural network model capable of altering its pattern classifying properties by program input is proposed. Here the “program input” is another source of input besides the pattern input. Unlike most neural network models, this model runs as a deterministic point process of spikes in continuous time; connections among neurons have finite delays, which are set randomly according to a normal distribution. Furthermore, this model utilizes functional connectivity which is dynamic connectivity among neurons peculiar to temporal-coding neural networks with short neuronal decay time constants. Computer simulation of the proposed network has been performed, and the results are considered in light of experimental results shown recently for correlated firings of neurons. Received: 6 December 1996 / Accepted in revised form: 15 September 1997  相似文献   

7.
Spike-timing-dependent plasticity (STDP) determines the evolution of the synaptic weights according to their pre- and post-synaptic activity, which in turn changes the neuronal activity. In this paper, we extend previous studies of input selectivity induced by (STDP) for single neurons to the biologically interesting case of a neuronal network with fixed recurrent connections and plastic connections from external pools of input neurons. We use a theoretical framework based on the Poisson neuron model to analytically describe the network dynamics (firing rates and spike-time correlations) and thus the evolution of the synaptic weights. This framework incorporates the time course of the post-synaptic potentials and synaptic delays. Our analysis focuses on the asymptotic states of a network stimulated by two homogeneous pools of “steady” inputs, namely Poisson spike trains which have fixed firing rates and spike-time correlations. The (STDP) model extends rate-based learning in that it can implement, at the same time, both a stabilization of the individual neuron firing rates and a slower weight specialization depending on the input spike-time correlations. When one input pathway has stronger within-pool correlations, the resulting synaptic dynamics induced by (STDP) are shown to be similar to those arising in the case of a purely feed-forward network: the weights from the more correlated inputs are potentiated at the expense of the remaining input connections.  相似文献   

8.
Inhibitory interneurons shape the spiking characteristics and computational properties of cortical networks. Interneuron subtypes can precisely regulate cortical function but the roles of interneuron subtypes for promoting different regimes of cortical activity remains unclear. Therefore, we investigated the impact of fast spiking and non-fast spiking interneuron subtypes on cortical activity using a network model with connectivity and synaptic properties constrained by experimental data. We found that network properties were more sensitive to modulation of the fast spiking population, with reductions of fast spiking excitability generating strong spike correlations and network oscillations. Paradoxically, reduced fast spiking excitability produced a reduction of global excitation-inhibition balance and features of an inhibition stabilised network, in which firing rates were driven by the activity of excitatory neurons within the network. Further analysis revealed that the synaptic interactions and biophysical features associated with fast spiking interneurons, in particular their rapid intrinsic response properties and short synaptic latency, enabled this state transition by enhancing gain within the excitatory population. Therefore, fast spiking interneurons may be uniquely positioned to control the strength of recurrent excitatory connectivity and the transition to an inhibition stabilised regime. Overall, our results suggest that interneuron subtypes can exert selective control over excitatory gain allowing for differential modulation of global network state.  相似文献   

9.
10.
Can the topology of a recurrent spiking network be inferred from observed activity dynamics? Which statistical parameters of network connectivity can be extracted from firing rates, correlations and related measurable quantities? To approach these questions, we analyze distance dependent correlations of the activity in small-world networks of neurons with current-based synapses derived from a simple ring topology. We find that in particular the distribution of correlation coefficients of subthreshold activity can tell apart random networks from networks with distance dependent connectivity. Such distributions can be estimated by sampling from random pairs. We also demonstrate the crucial role of the weight distribution, most notably the compliance with Dales principle, for the activity dynamics in recurrent networks of different types.  相似文献   

11.
Neurons in the primary visual cortex are more or less selective for the orientation of a light bar used for stimulation. A broad distribution of individual grades of orientation selectivity has in fact been reported in all species. A possible reason for emergence of broad distributions is the recurrent network within which the stimulus is being processed. Here we compute the distribution of orientation selectivity in randomly connected model networks that are equipped with different spatial patterns of connectivity. We show that, for a wide variety of connectivity patterns, a linear theory based on firing rates accurately approximates the outcome of direct numerical simulations of networks of spiking neurons. Distance dependent connectivity in networks with a more biologically realistic structure does not compromise our linear analysis, as long as the linearized dynamics, and hence the uniform asynchronous irregular activity state, remain stable. We conclude that linear mechanisms of stimulus processing are indeed responsible for the emergence of orientation selectivity and its distribution in recurrent networks with functionally heterogeneous synaptic connectivity.  相似文献   

12.
Mean-Field theory is extended to recurrent networks of spiking neurons endowed with short-term depression (STD) of synaptic transmission. The extension involves the use of the distribution of interspike intervals of an integrate-and-fire neuron receiving a Gaussian current, with a given mean and variance, in input. This, in turn, is used to obtain an accurate estimate of the resulting postsynaptic current in presence of STD. The stationary states of the network are obtained requiring self-consistency for the currents—those driving the emission processes and those generated by the emitted spikes. The model network stores in the distribution of two-state efficacies of excitatory-to-excitatory synapses, a randomly composed set of external stimuli. The resulting synaptic structure allows the network to exhibit selective persistent activity for each stimulus in the set. Theory predicts the onset of selective persistent, or working memory (WM) activity upon varying the constitutive parameters (e.g. potentiated/depressed long-term efficacy ratio, parameters associated with STD), and provides the average emission rates in the various steady states. Theoretical estimates are in remarkably good agreement with data “recorded” in computer simulations of the microscopic model. Action Editor: Karen Sigvardt  相似文献   

13.
Neuronal circuits in the rodent barrel cortex are characterized by stable low firing rates. However, recent experiments show that short spike trains elicited by electrical stimulation in single neurons can induce behavioral responses. Hence, the underlying neural networks provide stability against internal fluctuations in the firing rate, while simultaneously making the circuits sensitive to small external perturbations. Here we studied whether stability and sensitivity are affected by the connectivity structure in recurrently connected spiking networks. We found that anti-correlation between the number of afferent (in-degree) and efferent (out-degree) synaptic connections of neurons increases stability against pathological bursting, relative to networks where the degrees were either positively correlated or uncorrelated. In the stable network state, stimulation of a few cells could lead to a detectable change in the firing rate. To quantify the ability of networks to detect the stimulation, we used a receiver operating characteristic (ROC) analysis. For a given level of background noise, networks with anti-correlated degrees displayed the lowest false positive rates, and consequently had the highest stimulus detection performance. We propose that anti-correlation in the degree distribution may be a computational strategy employed by sensory cortices to increase the detectability of external stimuli. We show that networks with anti-correlated degrees can in principle be formed by applying learning rules comprised of a combination of spike-timing dependent plasticity, homeostatic plasticity and pruning to networks with uncorrelated degrees. To test our prediction we suggest a novel experimental method to estimate correlations in the degree distribution.  相似文献   

14.
Iglesias J  Villa AE 《Bio Systems》2007,89(1-3):287-293
Adult patterns of neuronal connectivity develop from a transient embryonic template characterized by exuberant projections to both appropriate and inappropriate target regions in a process known as synaptic pruning. Trigger signals able to induce synaptic pruning could be related to dynamic functions that depend on the timing of action potentials. We stimulated locally connected random networks of spiking neurons and observed the effect of a spike-timing-dependent synaptic plasticity (STDP)-driven pruning process on the emergence of cell assemblies. The spike trains of the simulated excitatory neurons were recorded. We searched for spatiotemporal firing patterns as potential markers of the build-up of functionally organized recurrent activity associated with spatially organized connectivity.  相似文献   

15.
The spread of excitation in a “random net” is investigated. It is shown that if the thresholds of individual neurons in the net are equal to unity, a positive steady state of excitation will be reached equal to γ, which previously had been computed as the weak connectivity of the net. If, however, the individual thresholds are greater than unity, either no positive steady state exists, or two such states depending on the magnitude of the axone density. In the latter case the smaller of the two steady states is unstable and hence resembles an “ignition point” of the net. If the initial stimulation (assumed instantaneous) exceeds the “ignition point,” the excitation of the net eventually assumes the greater steady state. Possible connections between this model and the phenomenon of the “preset” response are discussed.  相似文献   

16.
By “neural net” will be meant “neural net without circles.” Every neural net effects a transformation from inputs (i.e., firing patterns of the input neurons) to outputs (firing patterns of the output neurons). Two neural nets will be calledequivalent if they effect the same transformation from inputs to outputs. A canonical form is found for neural nets with respect to equivalence; i.e., a class of neural nets is defined, no two of which are equivalent, and which contains a neural net equivalent to any given neural net. This research was supported by the U.S. Air Force under Contract AF 49(638)-414 monitored by the Air Force Office of Scientific Research.  相似文献   

17.
The dynamics of local cortical networks are irregular, but correlated. Dynamic excitatory–inhibitory balance is a plausible mechanism that generates such irregular activity, but it remains unclear how balance is achieved and maintained in plastic neural networks. In particular, it is not fully understood how plasticity induced changes in the network affect balance, and in turn, how correlated, balanced activity impacts learning. How do the dynamics of balanced networks change under different plasticity rules? How does correlated spiking activity in recurrent networks change the evolution of weights, their eventual magnitude, and structure across the network? To address these questions, we develop a theory of spike–timing dependent plasticity in balanced networks. We show that balance can be attained and maintained under plasticity–induced weight changes. We find that correlations in the input mildly affect the evolution of synaptic weights. Under certain plasticity rules, we find an emergence of correlations between firing rates and synaptic weights. Under these rules, synaptic weights converge to a stable manifold in weight space with their final configuration dependent on the initial state of the network. Lastly, we show that our framework can also describe the dynamics of plastic balanced networks when subsets of neurons receive targeted optogenetic input.  相似文献   

18.
The present work describes a new technique for the identification of functional connectivity between neural firing patterns. The simultaneous singleunit recordings obtained from over 50 individual cells in the dragonfly mesothoracic ganglion during three consecutive behavioral states: pre-flight, flight and postflight were evaluated. Each individual spike train was converted into a synthesized analog gradient designed to capture crucial physiological characteristics of the cell from which the spike train emanated. Estimates of network functional connectivity were calculated using correlations between analog gradient spike trains for all possible cell pairings. Both functional excitation and inhibition could be detected in the correlations. The detection of functional connectivity was relatively independent of cell firing rate. More detailed analyses indicated the existence of cellular firing histories and connectivity patterns during flight that strongly resembled the characteristics of a bi-stable oscillator. Such an oscillator, hypothetically, could drive the elevator and depressor motor neuron firing paterns that support wing kinematics. There was no evidence for the functional existence of such an oscillator within either preor post-flight spike records. The detected spatiotemporal patterns of neural activity are hypothesized to be consistent with neural command sequences that the dragonfly might use to control flight. The demonstrated capability to define short-time scale functional relationships between spike trains obtained from dragonfly ganglia should have valuable applications to the comparative study of neural information processing strategies in a variety of other neural systems.  相似文献   

19.
Networks of neurons produce diverse patterns of oscillations, arising from the network's global properties, the propensity of individual neurons to oscillate, or a mixture of the two. Here we describe noisy limit cycles and quasi-cycles, two related mechanisms underlying emergent oscillations in neuronal networks whose individual components, stochastic spiking neurons, do not themselves oscillate. Both mechanisms are shown to produce gamma band oscillations at the population level while individual neurons fire at a rate much lower than the population frequency. Spike trains in a network undergoing noisy limit cycles display a preferred period which is not found in the case of quasi-cycles, due to the even faster decay of phase information in quasi-cycles. These oscillations persist in sparsely connected networks, and variation of the network's connectivity results in variation of the oscillation frequency. A network of such neurons behaves as a stochastic perturbation of the deterministic Wilson-Cowan equations, and the network undergoes noisy limit cycles or quasi-cycles depending on whether these have limit cycles or a weakly stable focus. These mechanisms provide a new perspective on the emergence of rhythmic firing in neural networks, showing the coexistence of population-level oscillations with very irregular individual spike trains in a simple and general framework.  相似文献   

20.
We develop a new computationally efficient approach for the analysis of complex large-scale neurobiological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating important spike pattern characteristics and designed in the form of a system of difference equations (a map). We developed a set of map-based models that replicate spiking activity of cortical fast spiking, regular spiking and intrinsically bursting neurons. Interconnected with synaptic currents these model neurons demonstrated responses very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons and fast spiking interneurons to model sleep and activated states of the thalamocortical system. Our study suggests that map-based models can be widely used for large-scale simulations and that such models are especially useful for tasks where the modeling of specific firing patterns of different cell classes is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号