首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the most striking features of hemi-gap-junctional channels is that they are dramatically modulated by extracellular divalent cations. In this study, we characterized the effects of external divalent cations and voltage on macroscopic human connexin46 (hCx46) hemi-gap-junctional currents using the two-electrode voltage-clamp technique. Increasing extracellular magnesium resulted in a shift of the voltage dependence of activation to more positive potentials, a decrease in the maximum conductance, an acceleration of deactivation, and a slowing of activation. Hyperpolarizing the membrane potential could mimic the effect of raising external magnesium on the activation kinetics and maximum conductance. These results could be interpreted in terms of a sequential model of channel activation with two independent divalent cation binding sites. This model could also explain the effects of external calcium on hCx46 hemichannels. However, the apparent binding affinities for calcium were significantly higher than for magnesium. In addition, we identified a mutation in the first extracellular domain of hCx46 (hCx46*N63S) that resulted in hemichannels that showed increased sensitivity to magnesium blockade.  相似文献   

2.
Regulation of connexons composed of human connexin26 (hCx26) by temperature   总被引:1,自引:0,他引:1  
This report shows that temperature is a latent regulator of the voltage-dependent conductance of hemichannels composed of hCx26. The latter were expressed in Xenopus oocytes by injection of a mixture of hCx26 cRNA and antisense of endogenous Cx38 (anti-Cx38). At 24-25 degrees C, voltage clamp of oocytes at potentials above -40 mV evoked outward currents which were not observed in control oocytes. These currents were reversibly affected by change in temperature. Increasing temperature of the bath solution amplified gradually, whereas decreasing bath temperatures below 20 degrees C reduced the current. Furthermore analysis revealed that temperature-dependent increase of the conductance of the hemichannels did not correlate with a change of the apparent gating charge, whereas the half-activation voltage V(1/2) of the hemichannel was affected by a temperature change. It is proposed that this finding correlates with a temperature-dependent transition into an open state above 20 degrees C. In addition, a temperature-dependent release of Lucifer Yellow from loaded liposomes containing reconstituted purified and hCx26 hemichannels was observed, which indicate that a temperature-dependent regulation of the permeability of hCx26 hemichannels is not related to intracellular mediators. The involvement of temperature to modulate hemichannels as well as of the corresponding gap junction channel composed of hCx26 at physiological condition is discussed.  相似文献   

3.
This report shows that temperature is a latent regulator of the voltage-dependent conductance of hemichannels composed of hCx26. The latter were expressed in Xenopus oocytes by injection of a mixture of hCx26 cRNA and antisense of endogenous Cx38 (anti-Cx38). At 24-25 °C, voltage clamp of oocytes at potentials above − 40 mV evoked outward currents which were not observed in control oocytes. These currents were reversibly affected by change in temperature. Increasing temperature of the bath solution amplified gradually, whereas decreasing bath temperatures below 20 °C reduced the current. Furthermore analysis revealed that temperature-dependent increase of the conductance of the hemichannels did not correlate with a change of the apparent gating charge, whereas the half-activation voltage V1/2 of the hemichannel was affected by a temperature change. It is proposed that this finding correlates with a temperature-dependent transition into an open state above 20 °C. In addition, a temperature-dependent release of Lucifer Yellow from loaded liposomes containing reconstituted purified and hCx26 hemichannels was observed, which indicate that a temperature-dependent regulation of the permeability of hCx26 hemichannels is not related to intracellular mediators. The involvement of temperature to modulate hemichannels as well as of the corresponding gap junction channel composed of hCx26 at physiological condition is discussed.  相似文献   

4.
Gap junctions are intercellular channels formed by the serial, head to head arrangement of two hemichannels. Each hemichannel is an oligomer of six protein subunits, which in vertebrates are encoded by the connexin gene family. All intercellular channels formed by connexins are sensitive to the relative difference in the membrane potential between coupled cells, the transjunctional voltage (Vj), and gate by the separate action of their component hemichannels (Harris, A.L., D.C. Spray, and M.V. Bennett. 1981. J. Gen. Physiol. 77:95-117). We reported previously that the polarity of Vj dependence is opposite for hemichannels formed by two closely related connexins, Cx32 and Cx26, when they are paired to form intercellular channels (Verselis, V.K., C.S. Ginter, and T.A. Bargiello. 1994. Nature. 368:348-351). The opposite gating polarity is due to a difference in the charge of the second amino acid. Negative charge substitutions of the neutral asparagine residue present in wild-type Cx32 (Cx32N2E or Cx32N2D) reverse the gating polarity of Cx32 hemichannels from closure at negative Vj to closure at positive Vj. In this paper, we further examine the mechanism of polarity reversal by determining the gating polarity of a chimeric connexin, in which the first extracellular loop (E1) of Cx32 is replaced with that of Cx43 (Cx43E1). The resulting chimera, Cx32*Cx43E1, forms conductive hemichannels when expressed in single Xenopus oocytes and intercellular channels in pairs of oocytes (Pfahnl, A., X.W. Zhou, R. Werner, and G. Dahl. 1997. Pflügers Arch. 433:733-779). We demonstrate that the polarity of Vj dependence of Cx32*Cx43E1 hemichannels in intercellular pairings is the same as that of wild-type Cx32 hemichannels and is reversed by the N2E substitution. In records of single intercellular channels, Vj dependence is characterized by gating transitions between fully open and subconductance levels. Comparable transitions are observed in Cx32*Cx43E1 conductive hemichannels at negative membrane potentials and the polarity of these transitions is reversed by the N2E substitution. We conclude that the mechanism of Vj dependence of intercellular channels is conserved in conductive hemichannels and term the process Vj gating. Heteromeric conductive hemichannels comprised of Cx32*Cx43E1 and Cx32N2E*Cx43E1 subunits display bipolar Vj gating, closing to substates at both positive and negative membrane potentials. The number of bipolar hemichannels observed in cells expressing mixtures of the two connexin subunits coincides with the number of hemichannels that are expected to contain a single oppositely charged subunit. We conclude that the movement of the voltage sensor in a single connexin subunit is sufficient to initiate Vj gating. We further suggest that Vj gating results from conformational changes in individual connexin subunits rather than by a concerted change in the conformation of all six subunits.  相似文献   

5.
Small organic amines block open voltage-gated K+ channels and can be trapped by subsequent closure. Such studies provide strong evidence for voltage gating occurring at the intracellular end of the channel. We engineered the necessary properties (long block times with unblock kinetics comparable to, or slower than, the kinetics of gating) into spermine-blocked, ATP-gated (N160D,L157C) mutant KATP channels, in order to test the possibility of "blocker trapping" in ligand-gated Kir channels. Spermine block of these channels is very strongly voltage dependent, such that, at positive voltages, the off-rate of spermine is very low. A brief pulse to negative voltages rapidly relieves the block, but no such relief is observed in ATP-closed channels. The results are well fit by a simple kinetic model that assumes no spermine exit from closed channels. The results incontrovertibly demonstrate that spermine is trapped in channels that are closed by ATP, and implicate the M2 helix bundle crossing, or somewhere lower, as the probable location of the gate.  相似文献   

6.
Connexin hemichannels are robustly regulated by voltage and divalent cations. The basis of voltage-dependent gating, however, has been questioned with reports that it is not intrinsic to hemichannels, but rather is derived from divalent cations acting as gating particles that block the pore in a voltage-dependent manner. Previously, we showed that connexin hemichannels possess two types of voltage-dependent gating, termed Vj and loop gating, that in Cx46 operate at opposite voltage polarities, positive and negative, respectively. Using recordings of single Cx46 hemichannels, we found both forms of gating persist in solutions containing no added Mg2+ and EGTA to chelate Ca2+. Although loop gating persists, it is significantly modulated by changing levels of extracellular divalent cations. When extracellular divalent cation concentrations are low, large hyperpolarizing voltages, exceeding −100 mV, could still drive Cx46 hemichannels toward closure. However, gating is characterized by continuous flickering of the unitary current interrupted by occasional, brief sojourns to a quiet closed state. Addition of extracellular divalent cations, in this case Mg2+, results in long-lived residence in a quiet closed state, suggesting that hyperpolarization drives the hemichannel to close, perhaps by initiating movements in the extracellular loops, and that divalent cations stabilize the fully closed conformation. Using excised patches, we found that divalent cations are only effective from the extracellular side, indicative that the binding site is not cytoplasmic or in the pore, but rather extracellular. Vj gating remains essentially unaffected by changing levels of extracellular divalent cations. Thus, we demonstrate that both forms of voltage dependence are intrinsic gating mechanisms in Cx46 hemichannels and that the action of external divalent cations is to selectively modulate loop gating.  相似文献   

7.
Transjunctional voltage (V(j)) gating of gap junction (GJ) channels formed of connexins has been proposed to occur by gating of the component hemichannels. We took advantage of the ability of Cx46 and Cx50 to function as unapposed hemichannels to identify gating properties intrinsic to hemichannels and how they contribute to gating of GJ channels. We show that Cx46 and Cx50 hemichannels contain two distinct gating mechanisms that generate reductions in conductance for both membrane polarities. At positive voltages, gating is similar in Cx46 and Cx50 hemichannels, primarily showing increased transitioning to long-lived substates. At negative voltages, Cx46 currents deactivate completely and the underlying single hemichannels exhibit transitions to a fully closed state. In contrast, Cx50 currents do not deactivate completely at negative voltages and the underlying single hemichannels predominantly exhibit transitions to various substates. Transitions to a fully closed state occur, but are infrequent. In the respective GJ channels, both forms of gating contribute to the reduction in conductance by V(j). However, examination of gating of mutant hemichannels and GJ channels in which the Asp at position 3 was replaced with Asn (D3N) showed that the positive hemichannel gate predominantly closes Cx50 GJs, whereas the negative hemichannel gate predominantly closes Cx46 GJs in response to V(j). We also report, for the first time, single Cx50 hemichannels in oocytes to be inwardly rectifying, high conductance channels (gamma = 470 pS). The antimalarial drug mefloquine, which selectively blocks Cx50 and not Cx46 GJs, shows the same selectivity in Cx50 and Cx46 hemichannels indicating that the actions of such uncoupling agents, like voltage gating, are intrinsic hemichannel properties.  相似文献   

8.
Single-channel, macroscopic ionic, and macroscopic gating currents were recorded from the voltage-dependent sodium channel using patch-clamp techniques on the cut-open squid giant axon. To obtain a complete set of physiological measurements of sodium channel gating under identical conditions, and to facilitate comparison with previous work, comparison was made between currents recorded in the absence of extracellular divalent cations and in the presence of physiological concentrations of extracellular Ca2+ (10 mM) and Mg2+ (50 mM). The single-channel currents were well resolved when divalent cations were not included in the extracellular solution, but were decreased in amplitude in the presence of Ca2+ and Mg2+ ions. The instantaneous current-voltage relationship obtained from macroscopic tail current measurements similarly was depressed by divalents, and showed a negative slope-conductance region for inward current at negative potentials. Voltage dependent parameters of channel gating were shifted 9-13 mV towards depolarized potentials by external divalent cations, including the peak fraction of channels open versus voltage, the time constant of tail current decline, the prepulse inactivation versus voltage relationship, and the charge-voltage relationship for gating currents. The effects of divalent cations are consistent with open channel block by Ca2+ and Mg2+ together with divalent screening of membrane charges.  相似文献   

9.
The voltage- and calcium-dependent gating properties of two lens gap-junctional hemichannels were compared at the macroscopic and single channel level. In solutions containing zero added calcium and 1 mM Mg, chicken Cx56 hemichannels were mostly closed at negative potentials and application of depolarizing voltage clamp steps elicited a slowly activating outward current. In contrast, chicken Cx45.6 hemichannels were predominantly open at negative potentials and rapidly closed in response to application of large depolarizing potentials. Another difference was that macroscopic Cx45.6 currents were much smaller in size than the hemichannel currents induced by oocytes with similar amounts of cRNA for Cx56. The aim of this study was to identify which regions of the connexins were responsible for the differences in voltage-dependent gating and macroscopic current amplitude by constructing a series of chimeric Cx45.6-Cx56 channels. Our results show that two charged amino acids that are specific for the alpha3-group connexins (R9 in the N-terminus and E43 in the first extracellular loop) are important determinants for the difference in voltage-dependent gating between Cx45.6 and Cx56 hemichannels; the first transmembrane-spanning domain, M1, is an important determinant of macroscopic current magnitude; R9 and E43 are also determinants of single channel conductance and rectification.  相似文献   

10.
Incorporation of Megatura crenulata hemocyanin into phosphatidylcholine black lipid membranes results in the formation of ion channels. Channel properties depend on many factors, three of which are examined in this work: type and concentration of electrolyte and applied voltage. Eight cations at different concentrations have been used. Instantaneous conductance of the channel is a saturating function of both applied voltage and ionic strength of the bathing solution with monovalent cations, but only of ionic strength with divalent cations. Steady-state voltage-conductance relations are nonlinear for both signs but show slight saturation with ionic strength. Relaxation towards the steady state can be fitted by two exponentials with different time constants. All experimental data are fitted postulating the existence of a mechanism of voltage gating of the channel, and of discrete negative charge near its mouth. Specific and nonspecific binding of cations is required.  相似文献   

11.
Both intracellular calcium and transmembrane voltage cause inactivation, or spontaneous closure, of L-type (CaV1.2) calcium channels. Here we show that long-lasting elevations of intracellular calcium to the concentrations that are expected to be near an open channel (>/=100 microM) completely and reversibly blocked calcium current through L-type channels. Although charge movements associated with the opening (ON) motion of the channel's voltage sensor were not altered by high calcium, the closing (OFF) transition was impeded. In two-pulse experiments, the blockade of calcium current and the reduction of gating charge movements available for the second pulse developed in parallel during calcium load. The effect depended steeply on voltage and occurred only after a third of the total gating charge had moved. Based on that, we conclude that the calcium binding site is located either in the channel's central cavity behind the voltage-dependent gate, or it is formed de novo during depolarization through voltage-dependent rearrangements just preceding the opening of the gate. The reduction of the OFF charge was due to the negative shift in the voltage dependence of charge movement, as previously observed for voltage-dependent inactivation. Elevation of intracellular calcium concentration from approximately 0.1 to 100-300 microM sped up the conversion of the gating charge into the negatively distributed mode 10-100-fold. Since the "IQ-AA" mutant with disabled calcium/calmodulin regulation of inactivation was affected by intracellular calcium similarly to the wild-type, calcium/calmodulin binding to the "IQ" motif apparently is not involved in the observed changes of voltage-dependent gating. Although calcium influx through the wild-type open channels does not cause a detectable negative shift in the voltage dependence of their charge movement, the shift was readily observable in the Delta1733 carboxyl terminus deletion mutant, which produces fewer nonconducting channels. We propose that the opening movement of the voltage sensor exposes a novel calcium binding site that mediates inactivation.  相似文献   

12.
Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.  相似文献   

13.
Sodium channel gating behavior was modeled with Markovian models fitted to currents from the cut-open squid giant axon in the absence of divalent cations. Optimum models were selected with maximum likelihood criteria using single-channel data, then models were refined and extended by simultaneous fitting of macroscopic ionic currents, ON and OFF gating currents, and single-channel first latency densities over a wide voltage range. Best models have five closed states before channel opening, with inactivation from at least one closed state as well as the open state. Forward activation rate constants increase with depolarization, and deactivation rate constants increase with hyperpolarization. Rates of inactivation from the open or closed states are generally slower than activation or deactivation rates and show little or no voltage dependence. Channels tend to reopen several times before inactivating. Macroscopic rates of activation and inactivation result from a combination of closed, open and inactivated state transitions. At negative potentials the time to first opening dominates the macroscopic current due to slow activation rates compared with deactivation rates: channels tend to reopen rarely, and often inactivate from closed states before they reopen. At more positive potentials, the time to first opening and burst duration together produce the macroscopic current.  相似文献   

14.
The gating behavior of human connexin 37 (hCx37) is unaffected by the nature of the bathing monovalent (for Na, K, Rb). It is modified by [Mg] in the millimolar range. For fitting the kinetics, we propose a simple extension to three states of the canonical 2-state model of the hemichannel. The extra closed state allows for some immobilization of a hemichannel at high transjunctional voltages. The model is reasonably efficient at fitting data at various voltage protocols. Interpreting the fits of the data at different [Mg] is consistent with a binding site for Mg.  相似文献   

15.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

16.
Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge–carrying arginine residues in skeletal muscle NaV1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only ∼1% of central pore current, but substitution of guanidine for sodium in the extracellular solution increases their size by 13- ± 2-fold. Ethylguanidine is permeant through the R666G gating pore at physiological membrane potentials but blocks the gating pore at hyperpolarized potentials. Guanidine is also highly permeant through the proton-selective gating pore formed by the mutant R666H. Gating pore current conducted by the R666G mutant is blocked by divalent cations such as Ba2+ and Zn2+ in a voltage-dependent manner. The affinity for voltage-dependent block of gating pore current by Ba2+ and Zn2+ is increased at more negative holding potentials. The apparent dissociation constant (Kd) values for Zn2+ block for test pulses to −160 mV are 650 ± 150 µM, 360 ± 70 µM, and 95.6 ± 11 µM at holding potentials of 0 mV, −80 mV, and −120 mV, respectively. Gating pore current is blocked by trivalent cations, but in a nearly voltage-independent manner, with an apparent Kd for Gd3+ of 238 ± 14 µM at −80 mV. To test whether these periodic paralyses might be treated by blocking gating pore current, we screened several aromatic and aliphatic guanidine derivatives and found that 1-(2,4-xylyl)guanidinium can block gating pore current in the millimolar concentration range without affecting normal NaV1.4 channel function. Together, our results demonstrate unique permeability of guanidine through NaV1.4 gating pores, define voltage-dependent and voltage-independent block by divalent and trivalent cations, respectively, and provide initial support for the concept that guanidine-based gating pore blockers could be therapeutically useful.  相似文献   

17.
Homomeric gap junction channels are composed solely of oneconnexin type, whereas heterotypic forms contain two homomeric hemichannels but the six identical connexins of each are different fromeach other. A heteromeric gap junction channel is one that containsdifferent connexins within either or both hemichannels. The existenceof heteromeric forms has been suggested, and many cell types are knownto coexpress connexins. To determine if coexpressed connexins wouldform heteromers, we cotransfected rat connexin43 (rCx43) and humanconnexin37 (hCx37) into a cell line normally devoid of any connexinexpression and used dual whole cell patch clamp to compare the observedgap junction channel activity with that seen in cells transfected onlywith rCx43 or hCx37. We also cocultured cells transfected with hCx37 orrCx43, in which one population was tagged with a fluorescent marker tomonitor heterotypic channel activity. The cotransfected cells possessedchannel types unlike the homotypic forms of rCx43 or hCx37 or theheterotypic forms. In addition, the noninstantaneous transjunctionalconductance-transjunctional voltage(Gj/Vj)relationship for cotransfected cell pairs showed a large range ofvariability that was unlike that of the homotypic or heterotypic form.The heterotypic cell pairs displayed asymmetric voltage dependence. Theresults from the heteromeric cell pairs are inconsistent with summedbehavior of two independent homotypic populations or mixed populationsof homotypic and heterotypic channels types. TheGj/Vjdata imply that the connexin-to-connexin interactions are significantlyaltered in cotransfected cell pairs relative to the homotypic andheterotypic forms. Heteromeric channels are a population of channelswhose characteristics could well impact differently from theirhomotypic counterparts with regard to multicellular coordinatedresponses.

  相似文献   

18.
Human ether-à-go-go-related gene (HERG) encoded K+ channels were expressed in Chinese hamster ovary (CHO-K1) cells and studied by whole-cell voltage clamp in the presence of varied extracellular Ca2+ concentrations and physiological external K+. Elevation of external Ca2+ from 1.8 to 10 mM resulted in a reduction of whole-cell K+ current amplitude, slowed activation kinetics, and an increased rate of deactivation. The midpoint of the voltage dependence of activation was also shifted +22.3 +/- 2.5 mV to more depolarized potentials. In contrast, the kinetics and voltage dependence of channel inactivation were hardly affected by increased extracellular Ca2+. Neither Ca2+ screening of diffuse membrane surface charges nor open channel block could explain these changes. However, selective changes in the voltage-dependent activation, but not inactivation gating, account for the effects of Ca2+ on Human ether-à-go-go-related gene current amplitude and kinetics. The differential effects of extracellular Ca2+ on the activation and inactivation gating indicate that these processes have distinct voltage-sensing mechanisms. Thus, Ca2+ appears to directly interact with externally accessible channel residues to alter the membrane potential detected by the activation voltage sensor, yet Ca2+ binding to this site is ineffective in modifying the inactivation gating machinery.  相似文献   

19.
J R Clay 《Biophysical journal》1995,69(5):1773-1779
The effects of intracellular magnesium ions and extracellular calcium and magnesium ions on the delayed rectifier potassium ion channel, IK, were investigated from intracellularly perfused squid giant axons. Cao+2 and Mgo+2 both blocked IK in a voltage-independent manner with a KD of approximately 100 and 500 mM, respectively. This effect was obscured at potentials in the vicinity of the resting potential (approximately -60 mV) by a rightward shift of the steady-state IK inactivation curve along the voltage axis. The addition of either calcium or magnesium ions to the extracellular solution also produced the well known shift of the IK activation curve along the voltage axis. Cao+2 was approximately twice as effective in this regard as Mgo+2. The IK activation kinetics were slowed by Cao+2, but deactivation kinetics were not altered, as shown previously. Similar results were obtained with Mgo+2. The addition of magnesium ions to the intracellular perfusate shifted the activation curve along the voltage axis in the negative direction (without producing block) by approximately the same among as the Mgo+2 shift of this curve in the positive direction. Moreover, Mgi+2 substantially slowed the deactivation kinetics, whereas the effects of Mgi+2 on activation kinetics at strongly depolarized potentials were relatively minor. At modest depolarizations, Mgi+2 significantly reduced the delay before IK activation. These results are essentially the mirror image of the effects on gating of extracellular divalent cations.  相似文献   

20.
Connexin46 (Cx46), together with Cx50, forms gap junction channels between lens fibers and participates in the lens pump-leak system, which is essential for the homeostasis of this avascular organ. Mutations in Cx50 and Cx46 correlate with cataracts, but the functional relationship between the mutations and cataract formation is not always clear. Recently, it was found that a mutation at the third position of hCx46 that substituted an aspartic acid residue with a tyrosine residue (hCx46D3Y) caused an autosomal dominant zonular pulverulent cataract. We expressed EGFP-labeled hCx46wt and hCx46D3Y in HeLa cells and found that the mutation did not affect the formation of gap junction plaques. Dye transfer experiments using Lucifer Yellow (LY) and ethidium bromide (EthBr) showed an increased degree of dye coupling between the cell pairs expressing hCx46D3Y in comparison to the cell pairs expressing hCx46wt. In Xenopus oocytes, two-electrode voltage-clamp experiments revealed that hCx46wt formed voltage-sensitive hemichannels. This was not observed in the oocytes expressing hCx46D3Y. The replacement of the aspartic acid residue at the third position by another negatively charged residue, glutamic acid, to generate the mutant hCx46D3E, restored the voltage sensitivity of the resultant hemichannels. Moreover, HeLa cell pairs expressing hCx46D3E and hCx46wt showed a similar degree of dye coupling. These results indicate that the negatively charged aspartic acid residue at the third position of the N-terminus of hCx46 could be involved in the determination of the degree of metabolite cell-to-cell coupling and is essential for the voltage sensitivity of the hCx46 hemichannels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号