首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The mechanisms regulating the coordinate activation of tens of thousands of replication origins in multicellular organisms remain poorly explored. Recent advances in genomics have provided valuable information about the sites at which DNA replication is initiated and the selection mechanisms of specific sites in both yeast and vertebrates. Studies in yeast have advanced to the point that it is now possible to develop convincing models for origin selection. A general model has emerged, but yeast data have also revealed an unsuspected diversity of strategies for origin positioning. We focus here on the ways in which chromatin structure may affect the formation of pre-replication complexes, a prerequisite for origin activation. We also discuss the need to exercise caution when trying to extrapolate yeast models directly to more complex vertebrate genomes.  相似文献   

4.
Human Mcm proteins at a replication origin during the G1 to S phase transition   总被引:11,自引:1,他引:10  
Previous work with yeast cells and with Xenopus egg extracts had shown that eukaryotic pre-replication complexes assemble on chromatin in a step-wise manner whereby specific loading factors promote the recruitment of essential Mcm proteins at pre-bound origin recognition complexes (ORC with proteins Orc1p–Orc6p). While the order of assembly—Mcm binding follows ORC binding—seems to be conserved in cycling mammalian cells in culture, it has not been determined whether mammalian Mcm proteins associate with ORC-bearing chromatin sites. We have used a chromatin immunoprecipitation approach to investigate the site of Mcm binding in a genomic region that has previously been shown to contain an ORC-binding site and an origin of replication. Using chromatin from HeLa cells in G1 phase, antibodies against Orc2p as well as antibodies against Mcm proteins specifically immunoprecipitate chromatin enriched for a DNA region that includes a replication origin. However, with chromatin from cells in S phase, only Orc2p-specific antibodies immunoprecipitate the origin-containing DNA region while Mcm-specific antibodies immunoprecipitate chromatin with DNA from all parts of the genomic region investigated. Thus, human Mcm proteins first assemble at or adjacent to bound ORC and move to other sites during genome replication.  相似文献   

5.
DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we performed a high‐resolution analysis of nucleosome architecture and initiation sites along several origins of different genomic location and firing efficiencies. We found that mammalian origins are highly variable in nucleosome conformation and initiation patterns. Strikingly, initiation sites at efficient CpG island‐associated origins always occur at positions of high‐nucleosome occupancy. Origin recognition complex (ORC) binding sites, however, occur at adjacent but distinct positions marked by labile nucleosomes. We also found that initiation profiles mirror nucleosome architecture, both at endogenous origins and at a transgene in a heterologous system. Our studies provide a unique insight into the relationship between chromatin structure and initiation sites in the mammalian genome that has direct implications for how the replication programme can be accommodated to diverse epigenetic scenarios.  相似文献   

6.
7.
8.
Replication of genomic material is a process that requires not only high fidelity in the duplication of DNA sequences but also inheritance of the chromatin states. In the last few years enormous effort has been put into elucidating the mechanisms involved in the correct propagation of chromatin states. From all these studies it emerges that an epigenetic network is at the base of this process. A coordinated interplay between histone modifications and histone variants, DNA methylation, RNA components, ATP-dependent chromatin remodeling, and histone-specific assembly factors regulates establishment of the replication timing program, initiation of replication, and propagation of chromatin domains. The aim of this review is to examine, in light of recent findings, how so many players can be coordinated with each other to achieve the same goal, a correct inheritance of the chromatin state.  相似文献   

9.
10.
11.
Branzei D  Foiani M 《DNA Repair》2007,6(7):994-1003
DNA replication is an essential process that occurs in all growing cells and needs to be tightly regulated in order to preserve genetic integrity. Eukaryotic cells have developed multiple mechanisms to ensure the fidelity of replication and to coordinate the progression of replication forks. Replication is often impeded by DNA damage or replication blocks, and the resulting stalled replication forks are sensed and protected by specialized surveillance mechanisms called checkpoints. The replication checkpoint plays an essential role in preventing the breakdown of stalled replication forks and the accumulation of DNA structures that enhance recombination and chromosomal rearrangements that ultimately lead to genomic instability and cancer development. In addition, the replication checkpoint is thought to assist and coordinate replication fork restart processes by controlling DNA repair pathways, regulating chromatin structure, promoting the recruitment of proteins to sites of damage, and controlling cell cycle progression. In this review we focus mainly on the results obtained in budding yeast to discuss on the multiple roles of checkpoints in maintaining fork integrity and on the enzymatic activities that cooperate with the checkpoint pathway to promote fork resumption and repair of DNA lesions thereby contributing to genome integrity.  相似文献   

12.
13.
14.
Kaposi's sarcoma associated herpesvirus (KSHV), an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA). Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors. Our previous studies identified and characterized another latent origin, which supported the replication of plasmids ex-vivo without LANA expression in trans. Therefore identification of an additional origin site prompted us to analyze the entire KSHV genome for replication initiation sites using single molecule analysis of replicated DNA (SMARD). Our results showed that replication of DNA can initiate throughout the KSHV genome and the usage of these regions is not conserved in two different KSHV strains investigated. SMARD also showed that the utilization of multiple replication initiation sites occurs across large regions of the genome rather than a specified sequence. The replication origin of the terminal repeats showed only a slight preference for their usage indicating that LANA dependent origin at the terminal repeats (TR) plays only a limited role in genome duplication. Furthermore, we performed chromatin immunoprecipitation for ORC2 and MCM3, which are part of the pre-replication initiation complex to determine the genomic sites where these proteins accumulate, to provide further characterization of potential replication initiation sites on the KSHV genome. The ChIP data confirmed accumulation of these pre-RC proteins at multiple genomic sites in a cell cycle dependent manner. Our data also show that both the frequency and the sites of replication initiation vary within the two KSHV genomes studied here, suggesting that initiation of replication is likely to be affected by the genomic context rather than the DNA sequences.  相似文献   

15.
Our studies have revealed that replicating DNA is more vulnerable to adduction than is non-replicating DNA. Contrary to our expectations that the vulnerability to neoplastic transformation induced by carcinogens in synchronized cells would parallel the rate of DNA replication, we actually found that the vulnerability was notably increased early in the S phase and more closely paralleled the rate of entry of cells into the S phase (the very beginning of S phase) rather than the overall rate of DNA synthesis. From these findings we hypothesized that there were targets for the neoplastic transformation of cells that were among the earliest replicated sequences in the genome. To test that this hypothesis was plausible we investigated the temporal order of DNA replication during the S phase and showed that the order of DNA replication was far more precisely defined than had been recognized previously. The cell synchronization techniques that made those findings possible made it feasible to demonstrate that only a relatively few sites of DNA replication are identifiable in chromosomal bands at the earliest times in the S phase. The same synchronization techniques enabled us to label DNA replicated when populations of cells were very early in S phase and to isolate and clone this DNA. The clonal elements of this library of DNA prepared in this manner have been sequenced and mapped to the human genome. Efforts are in progress to characterize the genes and sequence features associated with these regions. We have utilized methods to identify and characterize origins of DNA replication as a means of locating the earliest replicating part of these early replicating regions. We have identified several new origins of DNA replication that are activated early and late in the S phase but the features of the chromatin at the origin that determines its time of activation remain obscure. In an effort to improve our ability to identify more origins, particularly adjacent origins in genomic regions, we have combined the methods of DNA combing and FISH analysis of combed DNA to search for DNA precursor incorporation patterns characteristic of origins of DNA replication. Preliminary nascent strand abundance studies appear to have proven the existence of two origins of DNA replication predicted from the precursor incorporation studies. We have found that the combed DNA techniques can be combined with precursor incorporation studies and antibodies to sites of DNA damage to address questions of mechanisms of DNA damage and repair. For example these studies have shown recently that DNA damage is not randomly distributed in the genome and that both inhibition of replicon initiation and inhibition of strand elongation are separately distinguishable as components of the S checkpoint function.It is our hope and expectation that these results and the opportunities that they provide for future studies will enable us to identify possible targets for malignant transformation that explain our observation that cells at the start of S phase are vulnerable to the initiation of carcinogenesis.  相似文献   

16.
The model of in situ DNA replication provided by immunofluorescence and confocal imaging is compared with observations obtained by electron microscopic studies. Discrepancies between both types of observations call into question the replication focus as a persistent nuclear structure and as a replication entity where DNA replication takes place. Most electron microscopic analyses reveal that replication sites are confined to dispersed chromatin areas at the periphery of condensed chromatin, and the distribution of replication factors exhibits the same localization pattern. Moreover, rapid migration of newly synthesized DNA from the replication sites towards the interior of condensed chromatin regions obviously takes place during S-phase. It implies modifications of replication domains, hardly detectable by fluorescence microscopy. The confrontation of different observations carried out at light microscopic or electron microscopic levels of resolution lead to a conclusion that a combination of in vivo fluorescence analysis with a subsequent ultrastructural investigation performed on the same cells will represent an optimal approach in future studies of nuclear functions in situ.  相似文献   

17.
18.
Human TopBP1 ensures genome integrity during normal S phase   总被引:6,自引:0,他引:6       下载免费PDF全文
Cell cycle checkpoints are essential for maintaining genomic integrity. Human topoisomerase II binding protein 1 (TopBP1) shares sequence similarity with budding yeast Dpb11, fission yeast Rad4/Cut5, and Xenopus Cut5, all of which are required for DNA replication and cell cycle checkpoints. Indeed, we have shown that human TopBP1 participates in the activation of replication checkpoint and DNA damage checkpoints, following hydroxyurea treatment and ionizing radiation. In this study, we address the physiological function of TopBP1 in S phase by using small interfering RNA. In the absence of exogenous DNA damage, TopBP1 is recruited to replicating chromatin. However, TopBP1 does not appear to be essential for DNA replication. TopBP1-deficient cells have increased H2AX phosphorylation and ATM-Chk 2 activation, suggesting the accumulation of DNA double-strand breaks in the absence of TopBP1. This leads to formation of gaps and breaks at fragile sites, 4N accumulation, and aberrant cell division. We propose that the cellular function of TopBP1 is to monitor ongoing DNA replication. By ensuring proper DNA replication, TopBP1 plays a critical role in the maintenance of genomic stability during normal S phase as well as following genotoxic stress.  相似文献   

19.
In mammalian cells, the activity of the sites of initiation of DNA replication appears to be influenced epigenetically, but this regulation is not fully understood. Most studies of DNA replication have focused on the activity of individual initiation sites, making it difficult to evaluate the impact of changes in initiation activity on the replication of entire genomic loci. Here, we used single molecule analysis of replicated DNA (SMARD) to study the latent duplication of Epstein-Barr virus (EBV) episomes in human cell lines. We found that initiation sites are present throughout the EBV genome and that their utilization is not conserved in different EBV strains. In addition, SMARD shows that modifications in the utilization of multiple initiation sites occur across large genomic regions (tens of kilobases in size). These observations indicate that individual initiation sites play a limited role in determining the replication dynamics of the EBV genome. Long-range mechanisms and the genomic context appear to play much more important roles, affecting the frequency of utilization and the order of activation of multiple initiation sites. Finally, these results confirm that initiation sites are extremely redundant elements of the EBV genome. We propose that these conclusions also apply to mammalian chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号