首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermostable l-malate dehydrogenase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was isolated and characterized, and its gene was cloned and sequenced. The enzyme is a homodimer with a molecular mass of 70 kDa and catalyzes preferentially the reduction of oxaloacetic acid with NADH. A. fulgidus l-malate dehydrogenase was stable for 5 h at 90° C, and the half-life at 101° C was 80 min. Thus, A. fulgidus l-malate dehydrogenase is the most thermostable l-malate dehydrogenase characterized to date. Addition of K2HPO4 (1 M) increased the thermal stability by 40%. The primary structure shows a high similarity to l-lactate dehydrogenase from Thermotoga maritima and gram-positive bacteria, and to l-malate dehydrogenase from the archaeon Haloarcula marismortui and other l-lactate-dehydrogenase-like l-malate dehydrogenases. Received: 20 November 1997 / Accepted: 28 February 1997  相似文献   

2.
Zusammenfassung Es wird gezeigt, daß bei Leuconostoc mesenteroides 39 (ATCC 12291) der gleichzeitige Abbau von l-Malat die Glucosevergärung weder qualitativ noch quantitativ verändert. Bei Verwendung positionsmarkierter Glucose wird auch die Isotopenverteilung in den Gärungsprodukten durch gleichzeitige Malatgabe nicht verändert. Der Malatabbau steuert auch keine Energie zum Wachstum bei, wie die bei l-Malatgabe unveränderten YGlucose-Werte zeigen. Die von Doelle (1971) beschriebene verstärkte Milchsäurebildung aus Glucose bei Anwesenheit von Malat konnte auf einen pH-Effekt zurückgeführt werden. Für eine ebenfalls von Doelle (1971) berichtete Bildung von l-Lactat aus Glucose unter dem Einfluß von l-Malat ergab sich kein Anhaltspunkt.
The effect of l-malate on glucose fermentation by Leuconostoc mesenteroides
Summary It is shown that the simultaneous fermentation of l-malate and d-glucose by Leuconostoc mesenteroides 39 does not lead to quantitatively or qualitatively different fermentation products. When glucose, labelled in different positions is fermented, the distribution of 14C within the fermentation products is not changed by the addition of l-malate to the fermentation mixture. The l-malate fermentation does not contribute energy for growth, since Yglucose remains unchanged by adding l-malate to the medium. The increased production of lactic acid from glucose in the presence of l-malate, reported by Doelle (1971), is due to a pH effect. There is no indication of the formation of l(+)-lactate in addition to d(-)-lactate from glucose, when l-malate is present as claimed by Doelle (1971).
  相似文献   

3.
Epimastigotes ofTrypanosoma cruzi, the causative agent of Chagas disease, catabolize proteins and amino acids with production of NH3, and glucose with production of reduced catabolites, chiefly succinate andl-alanine, even under aerobic conditions. This aerobic fermentation of glucose is probably due to both the presence of low levels of some cytochromes, causing a relative inefficiency of the respiratory chain for NADH reoxidation during active glucose catabolism, and the lack of NADH dehydrogenase and phosphorylation site I, resulting in the entry of reduction equivalents into the chain mostly as succinate. Phosphoenol pyruvate carboxykinase and pyruvate kinase may play an essential role in diverting glucose carbon to succinate orl-alanine, andl-malate seems to be the major metabolite for the transport of glucose carbon and reduction equivalents between glycosome and mitochondrion. The parasite contains proteinase and peptidase activities. The major lysosomal cysteine proteinase, cruzipain, has been characterized in considerable detail, and might be involved in the host/parasite relationship, in addition to its obvious role in parasite nutrition. Among the enzymes of amino acid catabolism, two glutamate dehydrogenases (one NADP- and the other NAD-linked), alanine aminotransferase, and the major enzymes of aromatic amino acid catabolism (tyrosine aminotransferase and aromatic -hydroxy acid dehydrogenase), have been characterized and proposed to be involved in the reoxidation of glycolytic NADH.  相似文献   

4.
β-Poly(l-malate) (PMLA) production in Physarum polycephalum has been followed by using d-[1-13C]glucose and Ca13CO3. Nuclear magnetic resonance studies of PMLA showed that the 13C label from [1-13C]glucose was incorporated in the presence of CaCO3 into positions C-3 (-CH2-) and C-4 (-CO-) of the l-malate repeating unit of PMLA. The 13C label from Ca13CO3 was incorporated into position C-4 and indicated that not only the endogenous CO2 but also the exogenous CO2 from CaCO3 served significantly as a carbon source for PMLA production. In the absence of CaCO3, the 13C labeling pattern of PMLA from d-[1-13C]glucose was almost indistinguishable from that for the natural abundance 13C-NMR spectrum of the polymer. These results indicated that l-malate used for PMLA production is synthesized either via carboxylation of pyruvate and reduction of oxaloacetate in the presence of CaCO3 or via the oxidative tricarboxylic acid (TCA) cycle in the absence of CaCO3. Avidin strongly inhibited the formation of l-malate via carboxylation; the 13C labeling pattern of PMLA in the presence of CaCO3 was almost identical with that for the natural abundance spectrum when avidin was added, indicating that l-malate utilized for PMLA production was supplied under this condition by the oxidative TCA cycle. Received: 16 March 1999 / Received revision: 5 May 1999 / Accepted: 7 May 1999  相似文献   

5.
Summary Rhodospirillum rubrum was grown: 1. photoheterotrophically on a medium containing dl-malate as the carbon source and ammonium chloride as the nitrogen source (medium No. 1); 2. phototrophically with N2 and dl-malate (medium No. 2); 3. photoautotrophically with N2, CO2 and H2 (medium No. 3).Resting cells derived from these cultures were tested for their ability to photoreduce CO2, evolve H2 and fix N2. Only cells which were grown in medium No. 2 were able to perform all three gas exchanges. The activity pattern of gas exchanges altered in a characteristic way during the growth cycle of the bacterial culture. Cells newly transferred to medium No. 2 showed an enormous increase in the rate of H2 evolution, which dropped sharply when all l-malate had been used up. The rate of photoreduction of CO2 increased steadily and reached a maximum level after 120 h. The nitrogen fixing activity remained constant during the whole growth cycle.The yields of H2 produced per mole of l-malate added were measured as a function of cell age. Only very young cultures gave appreciable yields, which dropped gradually with increasing age.The function of the carbon source is discussed as a regulating factor for photoreduction and hydrogen evolution.  相似文献   

6.
Vinay Sharma  Dieter Strack 《Planta》1985,163(4):563-568
The distribution of l-malate, sinapic acid esters and 1-sinapoylglucose: l-malate sinapoyltransferase (SMT) which catalyzes the synthesis of sinapoyl-l-malate were examined in preparations of protoplasts obtained from cotyledons of red radish (Raphanus sativus L. var. sativus). Vacuoles isolated from the protoplasts contained all of the SMT activity, all of the accumulated sinapic acid esters and about 50% of free l-malate present initially in the protoplasts. An esterase activity, acting on 1-sinapoyglucose, was found to be exclusively localized in the cytoplasm and a large proportion was found to be recoverable in a 100 000-g pellet obtained from protoplast lysates. The vacuoles were obtained after lysis of the protoplasts by osmotic shock and purification on a Ficoll gradient. The cytoplasmic contamination of vacuole preparations was found to be about 10%, as judged by enzymatic markers and microscopic inspection. No SMT activity was found in a 100 000-g pellet obtained from vacuole lysates. The results indicate that biosynthesis of sinapoyl-l-malate takes place within the central vacuoles of redradish cotyledons.Abbreviation SMT 1-sinapoylglucose: l-malate sinapol-transferase  相似文献   

7.
In Rhodobacter capsulatus, the hupL gene encoding the large subunit of the uptake-hydrogenase (Hup) enzyme complex was mutated by insertion of an interposon. The mutant neither synthesized an active hydrogenase nor grew photoautotrophically. Under conditions of nitrogen (N) limitation, photoheterotrophic cultures of the wild type and the mutant evolved H2 by activity of the nitrogenase enzyme complex. When grown with glutamate as an N source and either d,l-malate or l-lactate as carbon sources, the efficiency of H2 production by the HupL mutant was higher than 90%, whereas wild-type cultures exhibited efficiencies of 54% (with d,l-malate) and 64% (with l-lactate), respectively. With NH inf4 sup+ as the N source, efficiencies of H2 production were 70% (mutant) and 52% (wild type). Correspondence to: J. Oelze  相似文献   

8.
Summary The aerobic and anaerobic metabolism of l-malate by Schizosaccharomyces pombe, strain 106, has been investigated. l-malate was converted to ethanol and CO2 stoichiometrically by intact cells under anaerobic conditions; oxalacetate and pyruvate were dissimilated to ethanol, acetoin, acetic acid and CO2. Under aerobic conditions the same organism oxidized a number of mono- and dicarboxylic acids at different rates. Citric-, lactic-and tartaric acid were not attacked. l-malate was oxidized quantitatively to CO2 and H2O. Possible intermediates in this reaction have been investigated.
Zusammenfassung In der vorliegenden Arbeit wurde unter anderem die Dissimilation von Äpfelsäure unter aeroben und anaeroben Bedingungen (Stickstoff-Atmosphäre) durch einen Stamm von Schizosaccharomyces pombe untersucht. Es zeigte sich, daß intakte, ruhende Zellen dieser Hefe l-Malat sowohl unter anaeroben wie aeroben Bedingungen vollständig abzubauen vermögen. Während die aerobe Dissimilation gemäß der Bruttogleichung l-Äpfelsäure +3O24CO2+3H2O verlief, erfolgte der anaerobe Abbau stöchiometrisch zu Äthanol und CO2. Die anaerobe Dissimilation von Oxalessigsäure und Brenztraubensäure lieferte Äthanol, Acetoin, Essigsäure und CO2. Unter aeroben Bedingungen war die untersuchte Hefe ferner imstande, eine ganze Reihe weiterer Mono-und Dicarbonsäuren mit unterschiedlicher Intensität zu oxydieren. Citronen-, Milchund Weinsäure wurden nicht angegriffen. Eine Bildung von Milchsäure konnte in keinem Fall nachgewiesen werden.
  相似文献   

9.
Growth ofSelenomonas ruminantium HD4 in medium that contained 21mm d-lactate was stimulated to varying degrees by 10mm l-malate, 10mm fumarate, and 2% (v/v)Aspergillus oryzae fermentation extract (Amaferm). Amaferm treatment caused the greatest growth stimulation. Initial uptake rates (30s) and long-term uptake rates (30 min) ofd-lactate by whole cells ofS. ruminantium were increased in the presence of 10mm l-malate. Amaferm (25 l/ml) also stimulated long-term uptake rates ofd-lactate, whereas fumarate had no effect. Initial uptake ofd-lactate was depressed in the presence of fumarate or Amaferm. When eitherl-malate, fumarate, or Amaferm was included in thed-lactate growth medium, a homosuccinate fermentation resulted and an inverse relationship was observed between growth (protein synthesis) and succinate production. Recent research demonstrated that Amaferm containsl-malate, and this dicarboxylic acid may be involved in stimulatingd-lactate utilization byS. ruminantium.  相似文献   

10.
An Arthrobacter sp. (strain 9006), isolated from lake water, accumulated nitrite up to about 15 mg N/l, but no nitrate. In a mineral medium supplemented with tryptone, yeast extract, acetate and ammonium, the cells released nitrite into the medium parallel to growth or when growth had virtually ceased. The nitrite formed was proportional to the initial acetate concentration, indicating an involvement of acetate metabolism with nitrification. The organism grew with a wide variety of organic carbon sources, but washed cells formed nitrite from ammonium only in the presence of citrate, malate, acetate or ethanol. Magnesium ions were required for nitrification of ammonium and could not be replaced by other divalent metal ions. Analysis of the glyoxylate cycle key enzymes in washed suspensions incubated in a minimal medium revealed that isocitrate lyase and malate synthase were most active during the nitrification phase. Nitrite accumulation but not growth was inhibited by glucose, tryptone and yeast extract. A possible explanation for the different nitrification patterns during growth is based on the regulatory properties of glyoxylate cycle enzymes.Abbreviations IL Isocitrate lyase [threo-Ds-isocitrate glyoxylate-lase, E.C. 4.1.3.1.] - MS malate synthase [l-malate glyoxylate-lyase (CoA-acetylating), E.C. 4.1.3.2.]  相似文献   

11.
12.
D. Strack  M. Pieroth  H. Scharf  V. Sharma 《Planta》1985,164(4):507-511
The tissue distributions of sinapic acid esters (1-sinapoylglucose, sinapolyl-l-malate, 6,3-disinapoylsucrose), kaempferol glycosides, free malic acid and of the enzyme involved in the synthesis of sinapoyl-l-malate, 1-sinapoylglucose: l-malate sinapoyltransferase (SMT), have been investigated in cotyledons of Raphanus sativus L. seedlings. The kaempferol glycosides were mainly localized in the upper epidermis. The sinapoyl esters were found in all tissues, but differed markedly in their concentrations. While disinapoylsucrose was localized predominantly in the mesophyll, most sinapoylmalate was found in the epidermal layers, as was most SMT activity. Ultraviolet microscopy and microfluorospectrophotometry of isolated epidermal peels indicated that the epidermal sinapoyl esters were restricted to guard cells, guard mother cells and adjacent epidermal cells. Upon excitation by UV light (365 nm) these exhibited strong blue fluorescence with an emission maximum at about 480 nm. Our results indicate a highly tissue-and cell-specific secondary metabolism in Raphanus cotyledons and indicate that the biosynthesis of sinapoylmalate is intimately related to the malic-acid metabolism of the guard cells.Abbreviations HPLC high-performance liquid chromatography - SMT 1-sinapoylglucose: l-malate sinapoyltransferase  相似文献   

13.
The dicarboxylic acid fumarate is an important intermediate in cellular processes and also serves as a precursor for the commercial production of fine chemicals such as l-malate. Yeast species differ remarkably in their ability to degrade extracellular dicarboxylic acids and to utilise them as their only source of carbon. In this study we have shown that the yeast Candida utilis effectively degraded extracellular fumarate and l-malate, but glucose or other assimilable carbon sources repressed the transport and degradation of these dicarboxylic acids. The transport of both dicarboxylic acids was shown to be strongly inducible by either fumarate or l-malate while kinetic studies suggest that the two dicarboxylic acids are transported by the same transporter protein. In contrast, Schizosaccharomyces pombe effectively degraded extracellular l-malate, but not fumarate, in the presence of glucose or other assimilable carbon sources. The Sch. pombe malate transporter was unable to transport fumarate, although fumarate inhibited the uptake of l-malate. Received: 15 March 2000 / Received revision: 4 July 2000 / Accepted: 9 July 2000  相似文献   

14.
The yeast Schizosaccharomyces malidevorans utilizes l-malate when grown on glucose as the carbon source. A mutant of this yeast has been isolated which is dependent on the presence of both l-malate and glucose for growth. The mutant utilizes l-malate as rapidly as the wildtype and the utilization of glucose is greatly reduced. Other TCA cycle intermediates do not relieve the malate dependence.To John Ingraham whose pioneering work with malolactic bucteria made me curious enough about the field of nine microbiology to enter it and whose intense instruction in scientific method has made my continued pursuit of physiological and genetic questions a joy  相似文献   

15.
Uptake activities for both glycerol andl-α-glycerol-3-phosphate inPseudomonas aeruginosa strain PAO were induced during growth in the presence of either glycerol ordl-α-glycerol-3-phosphate. Succinate, malate, and glucose exerted catabolite repression control over induction of both uptake activities. Glycerol uptake exhibited saturation kinetics with an apparentK m of 13 μM and aV max of 73 nmol/min/mg cell protein. The uptake ofl-α-glycerol-3-phosphate was inhibited by the presence of glycerol, but uptake of glycerol was unaffected by exogenousl-α-glycerol-3-phosphate. Uptake of both substrates by starved, induced cells was stimulated by exogenously providedd-glucose, 2-deoxy-d-glucose,d-gluconate, orl-malate. In a mutant deficient in gluconate uptake and glucose dehydrogenase (EC 1.1.1.47) activities,d-glucose, 2-deoxy-d-glucose, andd-gluconate exerted little or no effect on the uptake of either substrate, butl-malate markedly stimulated the processes. The uptake of both glycerol andl-α-glycerol-3-phosphate, by either starved or unstarved cells, was inhibited by a number of metabolic poisons, including arsenate, azide, cyanide, 2,4-dinitrophenol, and iodoacetate.  相似文献   

16.
Seedlings of red radish (Raphanus sativus L. var. sativus) accumulated high amounts of free malic acid and sinapoylmalate, when grown on nitrate as the sole N-source. In the presence of ammonium (NO 3 : NH 4 + , 1:2) both metabolites failed to accumulate, and the levels of arginine, asparagine, glutamine, histidine, and serine were greatly increased. The extractable activity of 1-sinapoylglucose: l-malate sinapoyltransferase, an enzyme which plays a key role in channelling malic acid into the sinapic-acid metabolism of this plant, was positively correlated with the malic-acid level in cotyledons. The possibility is discussed that free malic acid might be the likely candidate for regulating the activity of 1-sinapoylglucose: l-malate sinapoyltransferase.Abbreviation SMT sinapoylglucose: L-malate sinapoyltransferase  相似文献   

17.
The capability of microorganisms to utilize different carbohydrates as energy source reflects the availability of these substrates in their habitat. Investigation of the proteins involved in carbohydrate usage, in parallel with analysis of their expression, is then likely to provide information on the interaction between microorganisms and their ecosystem. We analysed the growth behaviour of the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 in the presence and in the absence of different carbon source. A marked increase in the optical density was detected when l-malate was added to the growth medium. Bacterial proteins differently expressed in the presence of l-malate were identified by proteomic profiling experiments. On the basis of their relative increase, six proteins were selected for further analyses. Among these, the expression of a putative outer membrane porin was demonstrated to be heavily induced by l-malate. The presence of a functionally active two-component regulatory system very likely controlled by l-malate was found in the upstream region of the porin gene. A non functional genomic porin mutant was then constructed showing a direct involvement of the protein in the uptake of l-malate. To the best of our knowledge, the occurrence of such a regulatory system has never been reported in Pseudoalteromonads so far and might constitute a key step in the development of an effective inducible cold expression system.  相似文献   

18.
The carbon-substrate utlization profile of 234 wild strains of thermophilic campylobacters originating from different animal sources and different part of the world was studied using a microgallery as well as the profile of 25 type strains ofCampylobacter species and reference strains ofCampylobacter-like organisms. Among the 98 substrates tested, succinate, fumarate,d-l-lactate,l-malate, pyruvate,l-glutamate,l-aspartate, andl-serine (with one exception for the last two) were always utilized by the wild strains, and acetate, propionate,d-malate, 2-cetoglutarate, itaconate, citrate, andl-proline by some of the strains. A strong association was found between assimilation ofd-malate and a positive hippurate test.  相似文献   

19.
Treponema denticola convertedl-ornithine, a product ofl-arginine catabolism, to putrescine via a decarboxylation reaction and to proline via a deamination reaction. Ornithine decarboxylation byT. denticola extracts was stimulated by pyridoxal 5′-phosphate. In the absence of pyridoxal 5′-phosphate, (NH4)2SO4-fractionated extracts converted ornithine to proline and ammonia. This activity was not stimulated by α-keto acids, nicotinamide adenine dinucleotide, reduced nicotinamide adenine dinucleotide or ADP. Neither ornithine δ-transaminase (l-ornithine: 2-oxoacid aminotransferase, EC 2.6.1.13) nor Δ1 reductase [l-proline: NAD(P) 5-oxidoreductase, EC 1.5.1.2.] activity was detectable in cell extracts. These results indicate that formation of proline from ornithine inT. denticola is catalyzed by an enzyme system analogous to the ornithine cyclase (deaminating) ofClostridium sporogenes. Exogenous ornithine inhibited the growth ofT. denticola. Thus, in addition to generating putrescine and proline, the ornithine dissimilatory pathways may serve to prevent accumulation of inhibitory concentrations of ornithine in the spirochete's environment.  相似文献   

20.
A malate dehydrogenase (MDH) from Streptomyces avermitilis MA-4680 (SaMDH) has been expressed and purified as a fusion protein. The molecular mass of SaMDH is about 35 kDa determined by SDS-PAGE. The recombinant SaMDH has a maximum activity at pH 8.0. The enzyme shows the optimal temperature around 42°C and displays a half-life (t 1/2) of 160 min at 50°C which is more thermostable than reported MDHs from most bacteria and fungi. The k cat value of SaMDH is about 240-fold of that for malate oxidation. In addition, the k cat/K m ratio shows that SaMDH has about 1,246-fold preference for oxaloacetate (OAA) reduction over l-malate oxidation. The recombinant SaMDH may also use NADPH as a cofactor although it is a highly NAD(H)-specific enzyme. There was no activity detected when malate and NADP+ were used as substrates. Substrate inhibition studies show that SaMDH activity is strongly inhibited by excess OAA with NADH, but is not sensitive to excess l-malate. Enzymatic activity is enhanced by the addition of Na+, NH4 +, Ca2+, Cu2+ and Mg2+ and inhibited by addition of Hg2+ and Zn2+. MDH is widely used in coenzyme regeneration, antigen immunoassays and bioreactors. The enzymatic analysis could provide the important basic knowledge for its utilizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号