首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The abundance of Gloeotrichia echinulata colonies in the sediments of Lake Erken and their phosphorus content were investigated to determine the contribution of Gloeotrichia colonies to total sediment phosphorus. Moreover, the potential size of the algal inoculum and the migration to the water during summer were estimated.The surplus phosphorus content of the resting colonies in the sediment was about 45% of total phosphorus, which maximized at 8.5 µg P (mg dw)–1 or 81 ng P colony–1. The C:P ratio (by weight) in the early colonies appearing in the lake water was 50:1, while the ratio stabilized at 150 during the major migration period. The internal supply of surplus phosphorus was used during the pelagic growth of the colonies.The internal phosphorus loading to the epilimnion of Lake Erken due to Gloeotrichia migration could, from the measurements of the increase in particulate epilimnetic phosphorus, be estimated at 40 mg P m –2 or 2.5 mg P m–2 d–1 in late July and early August. Determination of the number of colonies in the sediment before and during the migration verified this value to be a conservative estimate of the internal phosphorus loading due to Gloeotrichia migration to the epilimnion in Lake Erken.The sediment P content calculated from the P concentration in early epilimnion colonies resulted in a value of 35 µg P (g dw)–1 as a maximum. This corresponds to only 3% of the total phosphorus content in Lake Erken sediment.  相似文献   

2.
The uptake of nitrate, ammonium and phosphate was examined in vitro in seedlings of the seagrass Amphibolis antarctica ((Labill.) Sonder ex Aschers.). Uptake of all three nutrients was significantly correlated with external concentration up to 800 µ g l–1. The uptake of nitrate (0–200 µ g NO3-N g dry wt–1 h–1) was significantly lower than the uptake of ammonium (0–500 µ g NH4-N g dry wt–1 h–1), suggesting that the seedlings have a higher affinity for this form of nitrogen in the water column.Data were in general agreement with uptake rates recorded for other seagrasses, notably Zostera marina. In comparison to the dominant macroalgae for the same region, seedlings had either similar or higher uptake rates in relation to external concentration, lending support to the hypothesis that seedlings, which do not possess roots, behave like macroalgae in terms of nutrient acquisition from the water column.A comparison with literature data on adult seagrass suggests, however, that seagrasses show lower uptake rates than macroalgae suggesting that the macroalgae, which are totally reliant on the water column for nutrients, are more efficient at uptake than seagrasses which may potentially use the sediment for a nutrient source.  相似文献   

3.
Sedimentary phosphorus fractions and phosphorus release from the sediments were studied in Lake Ladoga at altogether 46 sampling sites, representing the full range of sediment types encountered in the lake. Determination of P fractions and physico-chemical analyses were made of surface sediment cores (10–20 cm long, each sampled at 3–4 levels) and in the overlying water. The range of total phosphorus per dry weight of sediment was 0.2–3.3 mg g–1, and that of inorganic P 0.1–2.5 mg g–1. The levels of interstitial soluble phosphorus, range 2–613 µg 1–1 for total P and 1–315 µg 1–1 for inorganic P, were higher than those of dissolved P concentrations in the overlying water. Diffusive fluxes of phosphate from sediment to the overlying water were estimated using three independent methods. The estimated range was 4–914 µg P m–2 d–1; the mean value for the whole bottom area, 0.1 mg P m–2 d–1, is lower than previously published estimates. The estimated annual contribution of sedimentary inorganic P flux to Lake Ladoga water is equal to 620 tons of P per year, which amounts to more than 10% of the estimated external P load into the lake. 68% of the total diffusive flux emanates from deep water sediments, which are not exposed to seasonal variation of conditions. In deep lakes, such as Lake Ladoga, phosphorus release from the sediments is controlled primarily by diffusive mechanisms. Wave action and currents as well as bioturbation are probably of importance mainly in shallow near-shore areas. Phosphorus release by gas ebullition and macrophytes is considered negligible.  相似文献   

4.
The population growth pattern and related changes in both the nitrogen and phosphorus contents in the cell of the dinoflagellate Peridinium penardii (Lemm.) Lemm., which formed a freshwater red tide in a reservoir, were studied in situ. An exponential increase with time in population density was found. A specific growth rate of 0.25 d–1 was observed. The cellular content of phosphorus per cell decreased from 6.0 × 10–5 µg to 9.2 × 10–6 µg along with an increase in population density from 8.0 × 102 cells ml–1 to 2.5 × 104 cells ml–1. A prominent change in the cellular nitrogen did not occur. Decreasing cell content and continuous uptake of phosphorus were advantageous for P. penardii to form a freshwater red tide under P-limited conditions.  相似文献   

5.
Control of phosphorus discharges: present situation and trends   总被引:4,自引:1,他引:3  
The dominating sources of phosphorus in municipal wastewaters are excreta, 1.4 g P/(cap.d) and detergents, 0.6 – 2 g P/(cap.d). Detergent phosphorus can be substituted by nitrilotriacetic acid or zeolites, but if a substantial reduction of phosphorus in municipal waters is to be achieved, modifying the treatment process is necessary. Primary, treatment by sedimentation removes only 10–15% and secondary biological treatment 20–30% of the phosphorus in waste water. If chemicals are added to the primary or secondary treatment stage or to a separate chemical stage, phosphorus can be efficiently removed. An effluent level of 0.8–1.5 g P m-3 is easily achieved and with a filtration step it is possible to maintain 0.2 g P m-3 in the effluent. Different process configurations are discussed. As precipitants, ferrous and ferric salts, alum and lime are widely used. By introducing anaerobic zones in the activated sludge process, it is possible to promote the growth of bacteria which enhance biological phosphorus uptake. This makes it possible to achieve high phosphorus removal without or, al least, with very small chemical additions. Several emerging physical, chemical and biological phosphorus removal processes are discussed. The removal of phosphorus to a level of 0.8–1.5 g P m-3 increases cost 10–20% compared with conventional primary secondary treatment. Higher removal efficiencies will rapidly increase the marginal cost per marginal kg P removed.  相似文献   

6.
Amat  M. A.  Braud  J. -P. 《Hydrobiologia》1990,(1):467-471
Cultivated Chondrus crispus was used in N-NH4 uptake experiments in the laboratory. An elevation of temperature increased the apparent rate of uptake, especially up to 11 °C. Uptake in the dark was found to be 83 % of that in the light. The apparent uptake decreased with increasing internal N pool; rates were 26.5, 22.2 and 20.2 µg N g dry wt–1 min–1 for internal N pools of 2.7, 3.5 and 4.6%, respectively. Apparent uptake increased with the substrate N concentration. The resulting curve has two components: an active uptake and a diffusion component at high (> 5000 µg N L–1) external N levels. Ks and V max were calculated by deducting the diffusion component from the uptake curve: these were of 497 µg N L –1 and 14.4 µg N g dry wt–1 min–1. respectively, and reflect a low substrate affinity. This could be the result of 10 years of continuous culture of C. crispus. Uptake was similarly followed in the culture tanks and showed comparable results; nighttime would be the most appropriate time to supply nutrients.  相似文献   

7.
Yu. I. Sorokin 《Hydrobiologia》1992,242(2):105-114
Exchange of phosphate between components of the reef bottom and the water column were studied on reefs around Heron Island (Great Barrier Reef), both in aquaria and in in situ enclosures, using radioactive phosphorus (32P) as a tracer. Living corals, dead corals, coral rubble overgrown with periphyton, and soft sediments of coral sand were used in experiments. In all of these components of bottom reef biotopes, two opposite flows of inorganic phosphate were recorded and measured, i.e. the rate of PO4-P uptake from water (Ac), and its release (Ae). At ambient PO4-P concentrations in water of 0.1– 0.3 µmoll–1, both flows varied in living corals and coral rubble between 10 and 70 µg P kg–1 h–1, 3–10 mg P m–2 day–1, and in coral sand between 10 and 30 µg P kg–1 h–1, or 2–7 mg P m–2 day–1. Under the latter concentration range (which is typical for coral reef areas), the reciprocal PO4-P flows almost balanced each other, so that net uptake (At) was very low. Often it approached zero or was positive, showing that a net PO4-P release had taken place. The uptake flow (Ac) in living coral was much more dependent on the PO4-P content in overlying water than was the release flow (Ae). The influence of conditions of illumination upon the values of Ac and Ae was comparatively low. The data obtained are used to discuss problems of phosphorus balance and dynamics in coral reef ecosystems.  相似文献   

8.
Experiments conducted on samples collected from a large oligotrophic lake revealed the following: (1) excretion rates of PO inf4 sup3– by single Daphnia thorata were below detection (5 pmol animal–1 min–1) in 20 ml of oligotrophic lake water over a period of 10 min, (2) experimental addition of D. thorata to 20 ml aliquots of lake water decreased community-wide microbial uptake of PO inf4 sup3– on two occasions (as measured by 32PO inf4 sup3– incorporation), and (3) the presence of D. thorata increased uptake by organisms smaller than 1µm, and decreased uptake by large phytoplankton. The specific mechanism for these responses remains unclear, but the results imply that when phytoplankton larger than 1µm encounter cm scale patches of water recently occupied by Daphnia they may experience decreased PO inf4 sup3– availability rather than elevated concentrations of PO inf4 sup3– caused by excretion. We show that 32P uptake experiments using natural plankton assemblages can be influenced by the presence or absence of large zooplankton, and that neither grazing, turbulence, nor PO inf4 sup3– excretion can account for this influence.  相似文献   

9.
As part of the Russian-Finnish research studies on Lake Ladoga, joint expeditions were organized in 1992 and 1993. Water samples were collected for intercalibration of chemical analysis methods and to monitor the chemical quality of the lake water.In August of 1992 water samples were taken from northern Lake Ladoga for intercalibration of Russian and Finnish analysis methods. In August 1993 water samples were collected from 23 sampling stations in all parts of the lake; some of these were also used for intercalibration purposes.The oxygen, colour and CODMn results were at the same level in the intercalibration. In 1993, the Ptot results obtained were acceptable. In Ntot, Fe and Mn analysis there seemed to be systematic and random errors between some results.The Secchi depth ranged from 1.5 m to 3.3 m. The average concentrations for the total phosphorus ranged from 15 µg 1–1 to 29 µg 1–1. The total nitrogen values were from 620 µg 1–1 to 690 µg 1–1. The N:P ratio varied from 24 to 40. The concentration of phosphorus indicated mesotrophic or even eutrophic conditions in the lake. Phosphorus seemed to be the limiting nutrient to bacteria and algae.  相似文献   

10.
The development of a filamentous, nitrogen-fixing cyanobacterial bloom was followed during July–August 1990 in a stratified basin in the central Gulf of Finland, Baltic Sea. Hydrography, dissolved inorganic, particulate and total nutrients, chlorophyll a, alkaline phosphatase activity, 32PO4-uptake and phytoplankton species were measured. The study period was characterized by wind-induced mixing events, followed by marked nutrient pulses and plankton community responses. Phosphate uptake was highest throughout the study period in the size fraction dominated by bacteria and picocyanobacteria (< 2 µm) and the proportion of uptake in the size fraction 2–10 µm remained low (2–6%). Higher phosphate turnover times were observed in a community showing signs of enhanced heterotrophic activity. The bloom of filamentous, nitrogen-fixing cyanobacteria Aphanizomenon flos-aquae was promoted by a nutrient pulse with an inorganic nutrient ratio (DIN:DIP) of 15. The results show that the quality, frequency and magnitude of the physically forced nutrient pulses have an important role in determining the relative share of the different modes of phosphorus utilization and hence in determining the cyanobacterial bloom intensity and species composition in the Baltic Sea.  相似文献   

11.
Vera Istvánovics 《Hydrobiologia》1993,253(1-3):193-201
In order to estimate microbial P content and biological P uptake in sediments, the tungstate precipitation method of Orrett & Karl (1987) was used in sediment extracts. This method allows a simple and rapid separation of organic and inorganic 32P radioactivity. Either inorganic 32P (as carrierfree H3 32PO4) or organic 32P (as 32P-labelled algal material) was added to surface sediment suspensions of shallow Lake Balaton. Inorganic 32P was rapidly transformed into organic 32P, and this process was completely inhibited by formaline. P content of living benthic microorganisms was estimated from steady state distribution of the radioactivity. Transformation of algal organic P into inorganic P could also be detected.In extremely P limited Lake Balaton benthic microorganisms were shown to supplement their high P requirements by inorganic P uptake. The velocity of the inorganic into organic P transformation, i.e. the rate of microbial P uptake, was comparable to P uptake in the water column. Microbial P uptake contributed significantly to total P fixation by sediments, particularly at low ( 100 µg P l–1) phosphate additions.  相似文献   

12.
P. Lopez  J. A. Morgui 《Hydrobiologia》1993,253(1-3):73-82
Total phosphorus in sediment (Psed) and its fractional composition (reactive phosphate extracted with NaOH, NaOH-RP, reactive phosphate extracted with HCl, HCl-RP, and residual phosphate, residual-P) have been determined in superficial sediments of 43 Spanish reservoirs located in different limnological regions and with different trophic states. Data were evaluated by statistical analysis to examine the influence of regional distribution and trophic status. Relations with calcium, manganese, iron and aluminium contents have also been studied.In the western part of Spain, reservoirs presented the highest values on average of Psed, NaOH-RP and residual-P (1296, 328 and 877 µg g–1 dw., respectively) and the lowest values of HCl-RP (91.0 µg g–1 dw.). The main phosphorus fractions were residual-P (> 50%) and NaOH-RP (>10%). In the eastern area, Psed NaOH-RP and residual-P attained the lowest values on average (502, 4 and 330 µg g–1 dw., respectively), whereas HCl-RP presented the highest values (167 µg g–1 dw.). The main fractions were residual-P (> 50%) and HCl-RP (> 25%).Trophic status seemed to be a secondary factor controlling Psed. The highest contents of Psed were found in eutroohic reservoirs, but only when those of the same region were compared, and the statistical significance (ANOVA F test) of the observed differences was very small (p < 0.057).  相似文献   

13.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

14.
Hartbeespoort Dam, a hypertrophic, warm monomictic impoundment in South Africa, receives extremely high phosphorus loads (14.6–25.9 g m–2 a–1) that are dominated by point source discharges from municipal wastewater treatment works. The reduced state of the phosphorus discharged from the works has led to the dominance of the dissolved phosphorus pool by low molecular weight orthophosphates which are analytically detectable as soluble reactive phosphorus (SRP; 60% of total phosphorus pool). Seasonality in the in-lake total phosphorus pool is regulated by a combination of abiotic and hydrological processes; biotic processes appear to play a minor role. Mass balance calculations indicate that between 62 and 77% of the annual total phosphorus inflow load is retained within the impoundment each year.  相似文献   

15.
Predictive models for phosphorus retention in wetlands   总被引:1,自引:0,他引:1  
The potential of wetlands to efficiently remove (i.e., act as a nutrient sink) or to transform nutrients like phosphorus under high nutrient loading has resulted in their consideration as a cost-effective means of treating wastewater on the landscape. Few predictive models exist which can accurately assess P retention capacity. An analysis of the north American data base (NADB) allowed us to develop a mass loading model that can be used to predict P storage and effluent concentrations from wetlands. Phosphorus storage in wetlands is proportional to P loadings but the output total phosphorus (TP) concentrations increase exponentially after a P loading threshold is reached. The threshold P assimilative capacity based on the NADB and a test site in the Everglades is approximately 1 g m–2 yr–1. We hypothesize that once loadings exceed 1 g m–2 yr–1 and short-term mechanisms are saturated, that the mechanisms controlling the uptake and storage of P in wetlands are exceeded and effluent concentrations of TP rise exponentially. We propose a One Gram Rule for freshwater wetlands and contend that this loading is near the assimilative capacity of wetlands. Our analysis further suggests that P loadings must be reduced to 1 g m–2 yr–1 or lower within the wetland if maintaining long-term low P output concentrations from the wetlands is the central goal. A carbon based phosphorus retention model developed for peatlands and tested in the Everglades of Florida provided further evidence of the proposed One Gram Rule for wetlands. This model is based on data from the Everglades areas impacted by agricultural runoff during the past 30 years. Preliminary estimates indicate that these wetlands store P primarily as humic organic-P, insoluble P, and Ca bound P at 0.44 g m–2 yr–1 on average. Areas loaded with 4.0 g m–2 yr–1 (at water concentrations>150 g·L–1 TP) stored 0.8 to 0.6 g m–2 yr–1 P, areas loaded with 3.3 g m–2 yr–1 P retained 0.6 to 0.4 g m–2 yr–1 P, and areas receiving 0.6 g m–2 yr–1 P retained 0.3 to 0.2 g m–2 yr–1. The TP water concentrations in the wetland did not drop below 50 g·L–1 until loadings were below 1 g m2 yr–1 P.  相似文献   

16.
The phosphorus cycle in the ecosystem of the shallow, hypertrophic Loosdrecht lakes (The Netherlands) was simulated by means of the dynamic eutrophication model PCLOOS. The model comprises three algal groups, zooplankton, fish, detritus, zoobenthos, sediment detritus and some inorganic phosphorus fractions. All organic compartments are modelled in two elements, carbon and phosphorus. Within the model system, the phosphorus cycle is considered as completely closed. Carbon and phosphorus are described independently, so that the dynamics of the P/C ratios can be modelled. The model has been partly calibrated by a method based on Bayesian statistics combined with a Range Check procedure.Simulations were carried out for Lake Loosdrecht for the periods before and after the restoration measures in 1984, which reduced the external phosphorus loading to the lake from ca. 2 mgP m–2 d–1 to 1 mgP m–2 d–1. The model outcome was largely comparable withthe measured data. Total phosphorus has slowly decreased from an average 130 µgP l–1 to ca. 80 µgP l–1, but chlorophyll-a (ca. 150 µg 1–1, summer-averaged) and seston concentrations (8–15 mgC 1–1) hardly changed since the restoration measures. About two-thirds of the seston consisted of detritus, while the phytoplankton remained dominated by filamentous cyanobacteria. The P/C ratio of the seston decreased from ca. 1.0% to 0.7%, while the P/C ratios of zooplankton, zoobenthos and fish have remained constant and are much higher. The system showed a delayed response to the decreased phosphorus loading until a new equilibrium was reached in ca. five years. Major reasons for the observed resilience of the lake in responding to the load reduction are the high phosphorus assimilation efficiency of the cyanobacteria and the high internal recycling of phosphorus. A further reduction of nutrient loading, perhaps in combination with additional measures like biomanipulation, will be the most fruitful additional restoration measure.  相似文献   

17.
Effect of soil compaction on root growth and uptake of phosphorus   总被引:9,自引:0,他引:9  
Summary Zea mays L. andLolium rigidum Gaud. were grown for 18 and 33 days respectively in pots containing three layers of soil each weighing 1 kg. The top and bottom layers were 100 mm deep and they had a bulk density of 1200 kg m–3, while the central layer of soil was compacted to one of 12 bulk densities between 1200 and 1750 kg m–3. The soil was labelled with32P and33P so that the contribution of the different layers of soil to the phosphorus content of the plant tops could be determined. Soil water potential was maintained between –20 and –100 kPa.Total dry weight of the plant tops and total root length were slightly affected by compaction of the soil, but root distribution was greatly altered. Compaction decreased root length in the compacted soil but increased root length in the overlying soil. Where bulk density was 1550 kg m–3, root length in the compacted soil was about 0.5 of the maximum. At that density, the penetrometer resistance of the soil was 1.25 and 5.0 MPa and air porosity was 0.05 and 0.14 at water potentials of –20 and –100 kPa respectively, and daytime oxygen concentrations in the soil atmosphere at time of harvest were about 0.1 m3m–3. Roots failed to grow completely through the compacted layer of soil at bulk densities 1550 kg m–3. No differences were detected in the abilities of the two species to penetrate compacted soil.Ryegrass absorbed about twice as much phosphorus from uncompacted soil per unit length of root as did maize. Uptake of phosphorus from each layer of soil was related to the length of root in that layer, but differences in uptake between layers existed. Phosphorus uptake per unit length of root was higher from compacted than from uncompacted soil, particularly in the case of ryegrass at bulk densities of 1300–1500 kg m–3.  相似文献   

18.
Grazing by the large caddisfly larva, Dicosmoecus gilvipes (Trichoptera; Limnephilidae), drastically reduced periphyton biomass in laboratory channels at a current velocity of 20 cm s–1. Reduction in biomass as chl a and AFDW ranged from 88 to 93% and 82 to 85%, respectively. On average, grazing rate increased with in-channel SRP (soluble reactive phosphorus) content from 6 to 10 µg 1–1. Grazing rates averaged 25.9–29.3 µg chl a m–2 d–1 and 10.8–12.2 µg chl a mg–1 d–1 based on area and grazer biomass, respectively, with most variability among treatments being due to the grazing effect. Grazing tended to shift the algal community increasingly to filamentous blue-green algae regardless of enrichment. After three weeks, Phormidium comprised over 61% of the community in grazed treatments but only 35% in ungrazed treatments. The stalked diatom Gomphonema comprised only 4% of the grazed community, but 11% in the three ungrazed channels with similar values for Scenedesmus. A model that includes grazing was calibrated to the data and produced a reasonable expectation of periphyton biomass over a range in SRP concentrations. While the model with constant grazer abundance predicts a gradually increasing grazed biomass as SRP increases, grazer production in natural streams may actually increase to accommodate the increased food production.  相似文献   

19.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

20.
Summer populations of the phytoplankton of the Loosdrecht Lakes were enclosed in laboratory scale enclosures (LSE), supplied with 7.5 g P.l–1.d–1 and 105 g P.l–1.d–1, respectively. The maximum initial phosphate uptake rate (Vm) was related to irradiance and primary production. At phosphate uptake saturating light-irradiance Vm values up to 4 times the Vm values in the dark were measured.The phosphate uptake capacity per unit dry weight remained more or less constant throughout the experiments in the LSE receiving the lower amount of phosphorus, and declined in the LSE receiving the higher amount of phosphorus. Within the range of Vm values measured (<10 g P.mg DW–1.h–1 or 1,3 g P. g chla –1.h–1), the growth rate of the phytoplankton was not influenced by alterations in phosphorus availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号