首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. We describe a double labelling method for estimating the duration of DNA synthesis (Ts) and the flux of cells into and from the S phase of the cell cycle, based on labelling with tritiated thymidine ([3H]TdR) followed by bromodeoxyuridine (BrdU) and combining immunohistological detection of BrdU with conventional autoradiography. In practice, the change in size of a window of double labelled cells occurs as the time interval between the two labels increases. In mouse tongue epithelium there is a marked circadian variation in the number of cells in DNA synthesis. From 0900 to 1500 h this labelling index (LI) falls, but from 2100 to 0300 h it increases. Our results show that the circadian decrease in LI is associated with a short Ts (5·8 ± 0·3 h), a high S phase efflux and an initially low influx of cells from G: into S. Conversely, the rising circadian LI is associated with a longer Ts (9.4 ± 0.1 h), an initially low efflux and a moderate to high influx. Two time-points exist on the circadian LI curve when influx and efflux rates change abruptly. At 0100 h the efflux rate rises from low (5 cells %/h) to high (15–16 cells %/h) and simultaneously the influx rate changes from high to low. Similarly at 1300–1400 h, efflux rate falls from high (19–20 cells %/h) to low (4–8 cells %/h) values and influx rates change from low to high. This double labelling method has revealed that the duration of DNA synthesis varies across the circadian cycle, as do influx and efflux values which generally fall within a discrete range of high or low values. The timing of the changes in flux suggests the presence of two 'control' points on the circadian LI cycle that were previously unrecognized.  相似文献   

2.
Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine [( 3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12-48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections. A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h. These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44-48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

3.
Abstract Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine ([3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12–48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections.
A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h.
These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44–48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

4.
Cell kinetic and histologic parameters of six xenografted tumours with volume doubling times ranging from 6 to 43 d were investigated in order to obtain kinetic information on a panel of tumours to be used in radiobiological studies. The six tumours covered a range of histologies and their DNA indices varied from 2.7 to 1.4. The length of the cell cycle (Tc), potential doubling time (Tpot) and labelling index (LI) were determined by continuous labelling with [3H]TdR and autoradiography in three tumours, Tc varied from 30 to 40 h. Determinations of the length of the S phase (Ts) were found to be less reliable by this method. Data on Ts and LI were also determined in all six tumours using bromodeoxyuridine (Brd) labelling and the single sample method: values of Tpot were slightly longer than those obtained via the autoradiographic method. In addition, multiple samples were taken after BrdU labelling. Tc was determined by fitting the data obtained from mid-S, mid-G2 and mid-G1 windows to curves described by a damped oscillator. Data obtained via the mid-S window were found to be most reliable. Generally, cell cycle times obtained by the BrdU method were longer than those observed with the autoradiographic method. Differences between the two methods could be explained by inaccuracies in the determination of Ts, LI and Tc and differences in the experimental approach. We consider the BrdU labelling method to be a suitable alternative for the time-consuming autoradiography, if data on Ts or Tpot are sufficient. Due to difficulties in the reproducibility of the immunofluorescence staining and asynchronization of cells approximately 10 h after labelling, the method of windows analysis was affected by similar problems to those observed in interpretation of percentage labelled mitosis (PLM) curves. However, the method may serve as an alternative to determine cell cycle times in vitro and, if improved technically, in vivo. Careful comparison of the data obtained from mid-S, mid-G1 and mid-G2 windows may increase the reliability of the determination of cell kinetic parameters.  相似文献   

5.
A prominent circadian rhythm was found in the labelling indices (LI) of the peripheral rat corneal epithelium and of the adjacent conjunctival epithelium, while almost no diurnal variation was found in the central area. Application of a double labelling technique indicated that there are rhythmic pulses of high and low influx of cells into the S phase and similar pulses of efflux of cells from the S phase. Results of the study indicate that there are different cohorts of cycling cells all over the rat corneal epithelium. Cells belonging to a rapidly proliferating cohort are observed in the peripheral cornea. There is a gradual reduction in the fraction of labelled DNA-synthesizing cells towards the centre. The considerably lower fraction of cells taking up tritiated thymidine (3H)TdR in the central cornea may be due to a higher fraction of basal cells having reached higher levels of differentiation. This may result in a shift from the salvage to the de novo pathway. The slowly proliferating cohort seems to have a prolonged S phase duration and displays practically no diurnal variation in the LI. The DNA-synthesizing cells belonging to this latter cohort probably use the salvage pathway for DNA synthesis resulting in uptake of (3H)TdR all over the cornea. The LI is thus not a reliable indicator of cell proliferation in the corneal epithelium, due both to the heterogeneity of the cell proliferation, and in particular due to the lack of labelling of the centrally located DNA-synthesizing cells. To what extent these properties may also be present in other proliferating tissues with different levels of differentiations, may be questioned.  相似文献   

6.
Abstract. By means of a double-labelling experiment, circadian variations in the kinetic parameters of the S phase of the hamster cheek pouch epithelium were studied. The evaluation of the experiment included a recently developed correction for deviations from the strict pulse interpretation of the labelling technique.
Pronounced circadian variations were found in S phase influx and efflux; the diurnal mean of both was estimated as 0.5%/hr, when based on measurements of all nucleated epithelial cells. Variations in S phase influx seem mainly responsuble for the diurnal variation in cell proliferation, although diurnal variation in DNA synthesis rate, and thus in mean transit time, was also found. The increases in LI and influx were closely correlated and related to the beginning of the dark period.
A circadian variation in cell number was also observed.  相似文献   

7.
Circadian rhythms in epidermal basal cell-cycle progression in hairless mouse skin have been repeatedly demonstrated. A dose of 10 mg/animal hydroxyurea (HU), given to inhibit DNA synthesis was injected intraperitoneally to two groups of hairless mice. One group was injected at 10.00 hours MET, when the cell-cycle progression and cell division rate are relatively high, and another group was injected at 20.00 hours, when the same variables are at minimum values. Various cell kinetic methods--[3H]TdR autoradiography, DNA flow cytometry and the stathmokinetic method (Colcemid)--were used to study HU-induced alterations in cell kinetics. Hydroxyurea (HU) immediately reduced the labelling index (LI) to less than 10% of controls when injected at both times of the day, and higher then normal values were observed 8 hr later. A subsequent decrease towards normal values was steeper in the 20.00 hours injected group. The proportion of cells with S-phase DNA content was transiently reduced in both series, but the reduction was less pronounced and control values were reached earlier in the series injected at 10.00 hours. The observed alterations in LI and fraction of cells in S phase were followed by comparable alterations in the fraction of cells in G2 and in the mitotic rate. Hence the changes in G2 and mitotic rate are easily explained as consequences of the previous perturbations in the S phase. The time-dependent differences in the cell kinetic perturbations caused by HU in the S phase may be explained by a circadian-phase-dependent action of HU on the influx and efflux of cells to and from the S phase, respectively. At 10.00 hours the efflux of cells from S is most heavily inhibited; at 20.00 hours the influx is predominantly blocked. Hence, when physiological flux is high HU mainly blocks the efflux from S, but when flux normally is low, HU mainly blocks the entrance to S. Within 20 hours after the HU injection, the cell kinetic variables had approached the unperturbed circadian pattern.  相似文献   

8.
Circadian rhythms in epidermal basal cell-cycle progression in hairless mouse skin have been repeatedly demonstrated. A dose of 10 mg/animal hydroxyurea (HU), given to inhibit DNA synthesis was injected intraperitoneally to two groups of hairless mice. One group was injected at 10.00 hours MET, when the cell-cycle progression and cell division rate are relatively high, and another group was injected at 20.00 hours, when the same variables are at minimum values. Various cell kinetic methods—[3H]TdR autoradiography, DNA flow cytometry and the stathmokinetic method (Colcemid)—were used to study HU-induced alterations in cell kinetics. Hydroxyurea (HU) immediately reduced the labelling index (LI) to less than 10% of controls when injected at both times of the day, and higher then normal values were observed 8 hr later. A subsequent decrease towards normal values was steeper in the 20.00 hours injected group. the proportion of cells with S-phase DNA content was transiently reduced in both series, but the reduction was less pronounced and control values were reached earlier in the series injected at 10.00 hours. the observed alterations in LI and fraction of cells in S phase were followed by comparable alterations in the fraction of cells in G2 and in the mitotic rate. Hence the changes in G2 and mitotic rate are easily explained as consequences of the previous perturbations in the S phase. The time-dependent differences in the cell kinetic perturbations caused by HU in the S phase may be explained by a circadian-phase-dependent action of HU on the influx and efflux of cells to and from the S phase, respectively. At 10.00 hours the efflux of cells from S is most heavily inhibited; at 20.00 hours the influx is predominantly blocked. Hence, when physiological flux is high HU mainly blocks the efflux from S, but when flux normally is low, HU mainly blocks the entrance to S. Within 20 hours after the HU injection, the cell kinetic variables had approached the unperturbed circadian pattern.  相似文献   

9.
An in vivo study of the hamster cheek pouch epithelium using the stathmokinetic technique (Colcemid) demonstrated a circadian variation in mitotic influx. Based on measurements of all nucleated epithelial cells the diurnal mean was estimated in two separate experiments as 0.34%/h +/- 0.02 (SE) and 0.27%/h +/- 0.02 (SE) respectively. 3HTdR was injected in the latter study (a double labelling experiment). The significant difference between the two experiments is, however, probably due to biological variations. The maximal values for the mitotic rate were found during the light (resting) period, as were the maximal values for the mitotic index. The mean mitotic influx for the 'light period' was estimated as 0.5-0.4%/h, and for the 'dark period' as 0.2%/h. Independent analyses demonstrated the necessity of a circadian-dependent correction of the 1 and 4 h values of accumulated metaphases. The 1 h value was significantly too high during the light as well as the dark period. The 4 h value was found to be too low, but only significantly so during the dark period. Basing the estimation of mitotic rate on the 3 h accumulation value produced only very similar results to those found by using all four accumulation periods. The use of overlapping experiments proved that only cells entering mitosis after Colcemid application were arrested, so that when arrested metaphases were counted the accumulation line was correctly drawn through the origin. In the latter study (the double labelling experiment) both S- (M?ller and Keiding 1982) and mitotic influx were estimated, the estimates being 0.55%/h +/- 0.03 (SE) and 0.27%/h +/- 0.02 (SE) respectively. Even considering possible methodological problems, the discrepancy between the S efflux and the mitotic influx indicates cell death and/or differentiation from G2.  相似文献   

10.
Cell cycle kinetics of solid tumors in the past have been restricted to an in vitro labeling index (LI) measurement. Two thymidine analogues, bromodeoxyuridine (BrdU) and iododeoxyuridine (IUdR), can be used to label S-phase cells in vivo because they can be detected in situ by use of monoclonal antibodies (MAb) against BrdU (Br-3) or IUdR (3D9). Patients with a variety of solid tumors (lymphoma, brain, colon cancers) received sequential intravenous IUdR and BrdU. Tumor tissue removed at the end of infusion was embedded in plastic and treated with MAb Br-3 and 3D9 sequentially, using a modification of a previously described method. Clearly single and double labeled cells were visible, which enabled us to determine the duration of S-phase (Ts) and the total cell cycle time (Tc), in addition to the LI in these tumors. Detailed control experiments using tissue culture cell lines as well as bone marrow cells from leukemic patients are described, including the comparison of this double label technique with our previously described BrdU-tritiated thymidine technique. We conclude that the two methods are comparable and that the IUdR/BrdU method permits rapid and reliable cell cycle measurements in solid tumors.  相似文献   

11.
In a previous study the epidermal cell kinetics of hairless mice were investigated with bivariate DNA/anti-bromodeoxyuridine (BrdU) flow cytometry of isolated basal cells after BrdU pulse labelling. The results confirmed our previous observations of two kinetically distinct sub-populations in the G2 phase. However, the results also showed that almost all BrdU-positive cells had left S phase 6-12 h after pulse labelling, contradicting our previous assumption of a distinct, slowly cycling, major sub-population in S phase. The latter study was based on an experiment combining continuous tritiated thymidine [( 3H]TdR) labelling and cell sorting. The purpose of the present study was to use a mathematical model to analyse epidermal cell kinetics by simulating bivariate DNA/BrdU data in order to get more details about the kinetic organization and cell cycle parameter values. We also wanted to re-evaluate our assumption of slowly cycling cells in S phase. The mathematical model shows a good fit to the experimental BrdU data initiated either at 08.00 hours or 20.00 hours. Simultaneously, it was also possible to obtain a good fit to our previous continuous labelling data without including a sub-population of slowly cycling cells in S phase. This was achieved by improving the way in which the continuous [3H]TdR labelling was simulated. The presence of two distinct subpopulations in G2 phase was confirmed and a similar kinetic organization with rapidly and slowly cycling cells in G1 phase is suggested. The sizes of the slowly cycling fractions in G1 and G2 showed the same distinct circadian dependency. The model analysis indicates that a small fraction of BrdU labelled cells (3-5%) was arrested in G2 phase due to BrdU toxicity. This is insignificant compared with the total number of labelled cells and has a negligible effect on the average cell cycle data. However, it comprises 1/3 to 1/2 of the BrdU positive G2 cells after the pulse labelled cells have been distributed among the cell cycle compartments.  相似文献   

12.
DNA synthesis time (Ts) and 3H thymidine (TdR) labelling index (LI) of bone marrow (BM) myelomatous plasma cells (PC) and of the residual haemopoietic cell population (RHCP) were measured by in vitro quantitative 14C-TdR autoradiography in five patients with multiple myeloma (MM) in different phases of disease (three at presentation and two at relapse) and in one patient with solitary extra-osseous myeloma. One other patient with plasma cell leukaemia (PCL) was studied during an initial relapse phase and later during the leukaemic terminal phase. PC Ts was 18.8 +/- 3.7 (from 13.3 to 25.0) hr and PC LI was 2.5 +/- 1.8% (from 1.0 to 6.3%). In the case of PCL, circulating PC had a Ts of 14.4 hr and a LI of 3.1. From these experimental measurements, the fractional turnover rate (FTR-percentage of cells produced per unit time) and the potential doubling time (Td) of BMPC were calculated assuming that all BMPC were in a steady-state at the time of the study. BMPC FTR was 3.53 +/- 2.3% cells per day (from 1.2 to 6.72) and BMPC Td was 46.8 +/- 27.5 days (from 15.0 to 75.4). Comparison with results obtained in BM blasts of children with acute lymphoblastic leukaemia (ALL) indicated that BMPC had a lower proliferative activity (P less than 0.001), although BMPC Ts was not significantly different. In two patients a tumour doubling time of 6 and 13 months was determined by clinical follow up. Comparison of this parameter with Td showed a cell loss factor of more than 90% in both patients. Kinetic data relative to RHCP showed slight variations with respect to those found in normal subjects, with a general tendency towards a prolongation of Ts and a reduction of LI.  相似文献   

13.
Durations of S-phase (Ts) and total cell cycle times (Tc) were measured from the peripheral blood (PB) and bone marrow aspirates (BM) of five patients with acute nonlymphocytic leukemia (ANLL). Intravenous bromodeoxyuridine (BrdU) was used as the first label for S-phase cells and a monoclonal anti-BrdU antibody was used to detect the positive cells. Tritiated thymidine [( 3H]Tdr) was used as a second label in vitro, and the Ts was calculated by counting the number of cells labeled either by BrdU or by [3H]Tdr or by both. Our data demonstrate that the duration of S-phase in myeloblasts obtained from BM is quite similar to that of circulating leukemic cells. Finally, the most accurate assessment of percentage of myeloblasts actively engaged in DNA synthesis can be obtained only from bone marrow biopsies following in vivo labeling.  相似文献   

14.
Several kinetic parameters of basal cell proliferation in hairless mouse epidermis were studied, and all parameters clearly showed circadian fluctuations during two successive 24 hr periods. Mitotic indices and the mitotic rate were studied in histological sections; the proportions of cells with S and G2 phase DNA content were measured by flow cytometry of isolated basal cells, and the [3H]TdR labelling indices and grain densities were determined by autoradiography in smears from basal cell suspensions. The influx and efflux of cells from each cell cycle phase were calculated from sinusoidal curves adapted to the cell kinetic findings and the phase durations were determined. A peak of cells in S phase was observed around midnight, and a cohort of partially synchronized cells passed from the S phase to the G2 phase and traversed the G2 phase and mitosis in the early morning. The fluctuations in the influx of cells into the S phase were small compared with the variations in efflux from the S phase and the flux through the subsequent cell cycle phases. The resulting delay in cell cycle traverse through S phase before midnight could well account for the accumulation of cells in S phase and, therefore, also the subsequent partial synchrony of cell cycle traverse through the G2 phase and mitosis. Circadian variations in the duration of the S phase, the G2 phase and mitosis were clearly demonstrated.  相似文献   

15.
F. Pera  P. Mattias 《Chromosoma》1976,57(1):13-18
A method of labelling DNA in vivo with 5-bromodeoxyuridine (BrdU) is described. After 6 h permanent subcutaneous infusion of BrdU in rodents (adult Microtus agrestis, pregnant NMRI-mice), cell nuclei which have undergone DNA synthesis during the BrdU treatment can be differentiated from the nuclei of other cycle stages by means of their altered staining behaviour after Giemsa. 24 h after the BrdU treatment, mitoses from both bone marrow of the adult animals and tissues from the fetuses showed a differential sister chromatid staining. In male M. agrestis, sister chromatid exchanges were most frequently found in the euchromatic part of the X and in the constitutive heterochromatin of both sex chromosomes.  相似文献   

16.
We have evaluated DNA synthesis rate (S rate) and time (Ts) and tritiated thymidine labelling index (LI) of peripheral blood (PB) and/or bone marrow (BM) leukaemic blasts (Bl) in nineteen cases of acute leukaemia (twelve non-lymphoblastic, AnLL, and seven lymphoblastic, ALL), in one case of non-Hodgkin's leukaemic lymphoma and in a case of plasma cell leukaemia. The LI of PB-Bl was significantly lower than that of BM-Bl (range 0.1-6.2% and 1.9-19.5%, respectively; P less than 0.01). The S rate was higher for PB-Bl than for BM-Bl (range 3.5-11.3 and 2.5-9.5 mol X 10(-18)/min; P less than 0.02) and the Ts of PB-Bl was shorter than that of BM-Bl (range 7.6-22.1 and 10.8-34.7 hr, respectively; P less than 0.02). In eight cases where S rates of both BM-Bl and PB-Bl were available, a linear correlation (r = 0.82; P less than 0.01) was found between the two parameters. This suggests that the DNA synthetic rate is a property of the leukaemic cell line in individual patients and differs from case to case. It further indicates that the environmental influences on the DNA synthesis rate in BM or PB are always of the same order of magnitude. From the results of this study we speculate that the DNA synthesis rate of leukaemic blasts is slowed down in the BM by environmental factors such as cell density.  相似文献   

17.
Abstract. In a previous study the epidermal cell kinetics of hairless mice were investigated with bivariate DNA/anti-bromodeoxyuridine (BrdU) flow cytometry of isolated basal cells after BrdU pulse labelling. The results confirmed our previous observations of two kinetically distinct sub-populations in the G2 phase. However, the results also showed that almost all BrdU-positive cells had left S phase 6–12 h after pulse labelling, contradicting our previous assumption of a distinct, slowly cycling, major sub-population in S phase. The latter study was based on an experiment combining continuous tritiated thymidine ([3H]TdR) labelling and cell sorting. The purpose of the present study was to use a mathematical model to analyse epidermal cell kinetics by simulating bivariate DNA/BrdU data in order to get more details about the kinetic organization and cell cycle parameter values. We also wanted to re-evaluate our assumption of slowly cycling cells in S phase. The mathematical model shows a good fit to the experimental BrdU data initiated either at 08.00 hours or 20.00 hours. Simultaneously, it was also possible to obtain a good fit to our previous continuous labelling data without including a sub-population of slowly cycling cells in S phase. This was achieved by improving the way in which the continuous [3H]TdR labelling was simulated. The presence of two distinct sub-populations in G2 phase was confirmed and a similar kinetic organization with rapidly and slowly cycling cells in G1 phase is suggested. The sizes of the slowly cycling fractions in G1 and G2 showed the same distinct circadian dependency. The model analysis indicates that a small fraction of BrdU labelled cells (3–5%) was arrested in G2 phase due to BrdU toxicity. This is insignificant compared with the total number of labelled cells and has a negligible effect on the average cell cycle data. However, it comprises 1/3 to 1/2 of the BrdU positive G2 cells after the pulse labelled cells have been distributed among the cell cycle compartments.  相似文献   

18.
Abstract. The present experiments with [14C]-thymidine (TdR) and [3H]-bromo-deoxyuridine (BrdU) using mouse jejunal crypt cells show that the upper limit of the tracer dose of TdR is about 0.5 µg g body weight-1 and that of BrdU is about 5·0 µg g body weight-1. Applying these doses, the proportions of the endogenous DNA synthesis attributed to the exogenous DNA precursor are 2% and 9% respectively. For [3H]-TdR doses commonly used in cell kinetic studies this proportion is only 0-1-1.0%, a negligible quantity that does not influence the endogenous DNA synthesis. The maximum availability time of tracer doses of TdR as well as BrdU is 40 to 60 min, the majority of the precursors being incorporated after 20 min. The availability time is the same for TdR doses exceeding the tracer dose by a factor of 80, whereas it is prolonged in the case of BrdU doses exceeding the tracer dose by a factor of 50. BrdU is suitable to replace radioactively labelled TdR in short term cell kinetic studies, i.e. determination of the labelling index or of the S phase duration by double labelling. However, more studies are needed to elucidate how far BrdU can replace TdR in long term studies as shown by differences between the fraction of labelled mitoses (FLM) curves of a human renal cell carcinoma measured with BrdU and [3H]-TdR.  相似文献   

19.
The present experiments with [14C]-thymidine (TdR) and [3H]-bromodeoxyuridine (BrdU) using mouse jejunal crypt cells show that the upper limit of the tracer dose of TdR is about 0.5 microgram g body weight-1 and that of BrdU is about 5.0 micrograms g body weight-1. Applying these doses, the proportions of the endogenous DNA synthesis attributed to the exogenous DNA precursor are 2% and 9% respectively. For [3H]-TdR doses commonly used in cell kinetic studies this proportion is only 0.1-1.0%, a negligible quantity that does not influence the endogenous DNA synthesis. The maximum availability time of tracer doses of TdR as well as BrdU is 40 to 60 min, the majority of the precursors being incorporated after 20 min. The availability time is the same for TdR doses exceeding the tracer dose by a factor of 80, whereas it is prolonged in the case of BrdU doses exceeding the tracer dose by a factor of 50. BrdU is suitable to replace radioactively labelled TdR in short term cell kinetic studies, i.e. determination of the labelling index or of the S phase duration by double labelling. However, more studies are needed to elucidate how far BrdU can replace TdR in long term studies as shown by differences between the fraction of labelled mitoses (FLM) curves of a human renal cell carcinoma measured with BrdU and [3H]-TdR.  相似文献   

20.
Abstract. Cell kinetic and histologic parameters of six xenografted tumours with volume doubling times ranging from 6 to 43 d were investigated in order to obtain kinetic information on a panel of tumours to be used in radiobiological studies. The six tumours covered a range of histologies and their DNA indices varied from 2–7 to 1–4. The length of the cell cycle (Tc), potential doubling time (Tpot) and labelling index (LI) were determined by continuous labelling with [3H]TdR and autoradiography in three tumours. Tc varied from 30 to 40 h. Determinations of the length of the S phase (Ts) were found to be less reliable by this method. Data on Ts and LI were also determined in all six tumours using bromodeoxyuridine (BrdU) labelling and the single sample method; values of Tpot were slightly longer than those obtained via the autoradiographic method. In addition, multiple samples were taken after BrdU labelling. Tc was determined by fitting the data obtained from mid-S, mid-G2 and mid-G1 windows to curves described by a damped oscillator. Data obtained via the mid-S window were found to be most reliable. Generally, cell cycle times obtained by the BrdU method were longer than those observed with the autoradiographic method. Differences between the two methods could be explained by inaccuracies in the determination of Ts, LI and Tc and differences in the experimental approach. We consider the BrdU labelling method to be a suitable alternative for the time-consuming autoradiography, if data on Ts or Tpot are sufficient. Due to difficulties in the reproducibility of the immunofluorescence staining and asynchronization of cells approximately 10 h after labelling, the method of windows analysis was affected by similar problems to those observed in interpretation of percentage labelled mitosis (PLM) curves. However, the method may serve as an alternative to determine cell cycle times in vitro and, if improved technically, in vivo. Careful comparison of the data obtained from mid-S, mid-G1 and mid-G2 windows may increase the reliability of the determination of cell kinetic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号