共查询到20条相似文献,搜索用时 15 毫秒
1.
lknur
zmen 《Biometrical journal. Biometrische Zeitschrift》2000,42(3):303-314
This paper reviews the generalized Poisson regression model, the restricted generalized Poisson regression model and the mixed Poisson regression (negative binomial regression and Poisson inverse Gaussian regression) models which can be used for regression analysis of counts. The aim of this study is to demonstrate the quasi likelihood/moment method, which is used for estimation of the parameters of mixed Poisson regression models, also applicable to obtain the estimates of the parameters of the generalized Poisson regression and the restricted generalized Poisson regression models. Besides, at the end of this study an application related to this method for zoological data is given. 相似文献
2.
Overdispersed count data are very common in ecology. The negative binomial model has been used widely to represent such data. Ecological data often vary considerably, and traditional approaches are likely to be inefficient or incorrect due to underestimation of uncertainty and poor predictive power. We propose a new statistical model to account for excessive overdisperson. It is the combination of two negative binomial models, where the first determines the number of clusters and the second the number of individuals in each cluster. Simulations show that this model often performs better than the negative binomial model. This model also fitted catch and effort data for southern bluefin tuna better than other models according to AIC. A model that explicitly and properly accounts for overdispersion should contribute to robust management and conservation for wildlife and plants. 相似文献
3.
A class of generalized linear mixed models can be obtained by introducing random effects in the linear predictor of a generalized linear model, e.g. a split plot model for binary data or count data. Maximum likelihood estimation, for normally distributed random effects, involves high-dimensional numerical integration, with severe limitations on the number and structure of the additional random effects. An alternative estimation procedure based on an extension of the iterative re-weighted least squares procedure for generalized linear models will be illustrated on a practical data set involving carcass classification of cattle. The data is analysed as overdispersed binomial proportions with fixed and random effects and associated components of variance on the logit scale. Estimates are obtained with standard software for normal data mixed models. Numerical restrictions pertain to the size of matrices to be inverted. This can be dealt with by absorption techniques familiar from e.g. mixed models in animal breeding. The final model fitted to the classification data includes four components of variance and a multiplicative overdispersion factor. Basically the estimation procedure is a combination of iterated least squares procedures and no full distributional assumptions are needed. A simulation study based on the classification data is presented. This includes a study of procedures for constructing confidence intervals and significance tests for fixed effects and components of variance. The simulation results increase confidence in the usefulness of the estimation procedure. 相似文献
4.
David C. Heilbron 《Biometrical journal. Biometrische Zeitschrift》1994,36(5):531-547
On occasion, generalized linear models for counts based on Poisson or overdispersed count distributions may encounter lack of fit due to disproportionately large frequencies of zeros. Three alternative types of regression models that utilize all the information and explicitly account for excess zeros are examined and given general formulations. A simple mechanism for added zeros is assumed that directly motivates one type of model, here called the added-zero type, particular forms of which have been proposed independently by D. LAMBERT (1992) and in unpublished work by the author. An original regression formulation (the zero-altered model) is presented as a reduced form of the two-part model for count data, which is also discussed. It is suggested that two-part models be used to aid in development of an added-zero model when the latter is thought to be appropriate. 相似文献
5.
Overdispersion is a common phenomenon in Poisson modeling, and the negative binomial (NB) model is frequently used to account for overdispersion. Testing approaches (Wald test, likelihood ratio test (LRT), and score test) for overdispersion in the Poisson regression versus the NB model are available. Because the generalized Poisson (GP) model is similar to the NB model, we consider the former as an alternate model for overdispersed count data. The score test has an advantage over the LRT and the Wald test in that the score test only requires that the parameter of interest be estimated under the null hypothesis. This paper proposes a score test for overdispersion based on the GP model and compares the power of the test with the LRT and Wald tests. A simulation study indicates the score test based on asymptotic standard Normal distribution is more appropriate in practical application for higher empirical power, however, it underestimates the nominal significance level, especially in small sample situations, and examples illustrate the results of comparing the candidate tests between the Poisson and GP models. A bootstrap test is also proposed to adjust the underestimation of nominal level in the score statistic when the sample size is small. The simulation study indicates the bootstrap test has significance level closer to nominal size and has uniformly greater power than the score test based on asymptotic standard Normal distribution. From a practical perspective, we suggest that, if the score test gives even a weak indication that the Poisson model is inappropriate, say at the 0.10 significance level, we advise the more accurate bootstrap procedure as a better test for comparing whether the GP model is more appropriate than Poisson model. Finally, the Vuong test is illustrated to choose between GP and NB2 models for the same dataset. 相似文献
6.
Izabela R. C. Oliveira Geert Molenberghs Clarice G. B. Demétrio Carlos T. S. Dias Suely R. Giolo Marcela C. Andrade 《Biometrical journal. Biometrische Zeitschrift》2016,58(4):852-867
The intraclass correlation is commonly used with clustered data. It is often estimated based on fitting a model to hierarchical data and it leads, in turn, to several concepts such as reliability, heritability, inter‐rater agreement, etc. For data where linear models can be used, such measures can be defined as ratios of variance components. Matters are more difficult for non‐Gaussian outcomes. The focus here is on count and time‐to‐event outcomes where so‐called combined models are used, extending generalized linear mixed models, to describe the data. These models combine normal and gamma random effects to allow for both correlation due to data hierarchies as well as for overdispersion. Furthermore, because the models admit closed‐form expressions for the means, variances, higher moments, and even the joint marginal distribution, it is demonstrated that closed forms of intraclass correlations exist. The proposed methodology is illustrated using data from agricultural and livestock studies. 相似文献
7.
Overdispersion or extra-Poisson variation is very common for count data. This phenomenon arises when the variability of the counts greatly exceeds the mean under the Poisson assumption, resulting in substantial bias for the parameter estimates. To detect whether count data are overdispersed in the Poisson regression setting, various tests have been proposed and among them, the score tests derived by Dean (1992) are popular and easy to implement. However, such tests can be sensitive to anomalous or extreme observations. In this paper, diagnostic measures are proposed for assessing the sensitivity of Dean's score test for overdispersion in Poisson regression. Applications to the well-known fabric faults and Ames salmonella assay data sets illustrate the usefulness of the diagnostics in analyzing overdispersed count data. 相似文献
8.
Summary . In this article, we study the robust estimation of both mean and variance components in generalized partial linear mixed models based on the construction of robustified likelihood function. Under some regularity conditions, the asymptotic properties of the proposed robust estimators are shown. Some simulations are carried out to investigate the performance of the proposed robust estimators. Just as expected, the proposed robust estimators perform better than those resulting from robust estimating equations involving conditional expectation like Sinha (2004, Journal of the American Statistical Association 99, 451–460) and Qin and Zhu (2007, Journal of Multivariate Analysis 98, 1658–1683). In the end, the proposed robust method is illustrated by the analysis of a real data set. 相似文献
9.
Several analysis of the geographic variation of mortality rates in space have been proposed in the literature. Poisson models allowing the incorporation of random effects to model extra‐variability are widely used. The typical modelling approach uses normal random effects to accommodate local spatial autocorrelation. When spatial autocorrelation is absent but overdispersion persists, a discrete mixture model is an alternative approach. However, a technique for identifying regions which have significant high or low risk in any given area has not been developed yet when using the discrete mixture model. Taking into account the importance that this information provides to the epidemiologists to formulate hypothesis related to the potential risk factors affecting the population, different procedures for obtaining confidence intervals for relative risks are derived in this paper. These methods are the standard information‐based method and other four, all based on bootstrap techniques, namely the asymptotic‐bootstrap, the percentile‐bootstrap, the BC‐bootstrap and the modified information‐based method. All of them are compared empirically by their application to mortality data due to cardiovascular diseases in women from Navarra, Spain, during the period 1988–1994. In the small area example considered here, we find that the information‐based method is sensible at estimating standard errors of the component means in the discrete mixture model but it is not appropriate for providing standard errors of the estimated relative risks and hence, for constructing confidence intervals for the relative risk associated to each region. Therefore, the bootstrap‐based methods are recommended for this matter. More specifically, the BC method seems to provide better coverage probabilities in the case studied, according to a small scale simulation study that has been carried out using a scenario as encountered in the analysis of the real data. 相似文献
10.
We prove that the generalized Poisson distribution GP(theta, eta) (eta > or = 0) is a mixture of Poisson distributions; this is a new property for a distribution which is the topic of the book by Consul (1989). Because we find that the fits to count data of the generalized Poisson and negative binomial distributions are often similar, to understand their differences, we compare the probability mass functions and skewnesses of the generalized Poisson and negative binomial distributions with the first two moments fixed. They have slight differences in many situations, but their zero-inflated distributions, with masses at zero, means and variances fixed, can differ more. These probabilistic comparisons are helpful in selecting a better fitting distribution for modelling count data with long right tails. Through a real example of count data with large zero fraction, we illustrate how the generalized Poisson and negative binomial distributions as well as their zero-inflated distributions can be discriminated. 相似文献
11.
We extend an approach for estimating random effects parameters under a random intercept and slope logistic regression model to include standard errors, thereby including confidence intervals. The procedure entails numerical integration to yield posterior empirical Bayes (EB) estimates of random effects parameters and their corresponding posterior standard errors. We incorporate an adjustment of the standard error due to Kass and Steffey (KS; 1989, Journal of the American Statistical Association 84, 717-726) to account for the variability in estimating the variance component of the random effects distribution. In assessing health care providers with respect to adult pneumonia mortality, comparisons are made with the penalized quasi-likelihood (PQL) approximation approach of Breslow and Clayton (1993, Journal of the American Statistical Association 88, 9-25) and a Bayesian approach. To make comparisons with an EB method previously reported in the literature, we apply these approaches to crossover trials data previously analyzed with the estimating equations EB approach of Waclawiw and Liang (1994, Statistics in Medicine 13, 541-551). We also perform simulations to compare the proposed KS and PQL approaches. These two approaches lead to EB estimates of random effects parameters with similar asymptotic bias. However, for many clusters with small cluster size, the proposed KS approach does better than the PQL procedures in terms of coverage of nominal 95% confidence intervals for random effects estimates. For large cluster sizes and a few clusters, the PQL approach performs better than the KS adjustment. These simulation results agree somewhat with those of the data analyses. 相似文献
12.
Hiebeler D 《Journal of theoretical biology》2005,232(1):143-149
The basic contact process in continuous time is studied, where instead of single occupied sites becoming empty independently, larger-scale disturbance events simultaneously remove the population from contiguous blocks of sites. Stochastic spatial simulations and pair approximations were used to investigate the model. Increasing the spatial scale of disturbance events increases spatial clustering of the population and variability in growth rates within localized regions, reduces the effective overall population density, and increases the critical reproductive rate necessary for the population to persist. Pair approximations yield a closed-form analytic expression for equilibrium population density and the critical value necessary for persistence. 相似文献
13.
Josep L. Carrasco 《Biometrics》2010,66(3):897-904
Summary The classical concordance correlation coefficient (CCC) to measure agreement among a set of observers assumes data to be distributed as normal and a linear relationship between the mean and the subject and observer effects. Here, the CCC is generalized to afford any distribution from the exponential family by means of the generalized linear mixed models (GLMMs) theory and applied to the case of overdispersed count data. An example of CD34+ cell count data is provided to show the applicability of the procedure. In the latter case, different CCCs are defined and applied to the data by changing the GLMM that fits the data. A simulation study is carried out to explore the behavior of the procedure with a small and moderate sample size. 相似文献
14.
In many longitudinal studies, interest focuses on the occurrence rate of some phenomenon for the subjects in the study. When the phenomenon is nonterminating and possibly recurring, the result is a recurrent-event data set. Examples include epileptic seizures and recurrent cancers. When the recurring event is detectable only by an expensive or invasive examination, only the number of events occurring between follow-up times may be available. This article presents a semiparametric model for such data, based on a multiplicative intensity model paired with a fully flexible nonparametric baseline intensity function. A random subject-specific effect is included in the intensity model to account for the overdispersion frequently displayed in count data. Estimators are determined from quasi-likelihood estimating functions. Because only first- and second-moment assumptions are required for quasi-likelihood, the method is more robust than those based on the specification of a full parametric likelihood. Consistency of the estimators depends only on the assumption of the proportional intensity model. The semiparametric estimators are shown to be highly efficient compared with the usual parametric estimators. As with semiparametric methods in survival analysis, the method provides useful diagnostics for specific parametric models, including a quasi-score statistic for testing specific baseline intensity functions. The techniques are used to analyze cancer recurrences and a pheromone-based mating disruption experiment in moths. A simulation study confirms that, for many practical situations, the estimators possess appropriate small-sample characteristics. 相似文献
15.
Trias Wahyuni Rakhmawati Geert Molenberghs Geert Verbeke Christel Faes 《Biometrical journal. Biometrische Zeitschrift》2016,58(6):1390-1408
We consider models for hierarchical count data, subject to overdispersion and/or excess zeros. Molenberghs et al. ( 2007 ) and Molenberghs et al. ( 2010 ) extend the Poisson‐normal generalized linear‐mixed model by including gamma random effects to accommodate overdispersion. Excess zeros are handled using either a zero‐inflation or a hurdle component. These models were studied by Kassahun et al. ( 2014 ). While flexible, they are quite elaborate in parametric specification and therefore model assessment is imperative. We derive local influence measures to detect and examine influential subjects, that is subjects who have undue influence on either the fit of the model as a whole, or on specific important sub‐vectors of the parameter vector. The latter include the fixed effects for the Poisson and for the excess‐zeros components, the variance components for the normal random effects, and the parameters describing gamma random effects, included to accommodate overdispersion. Interpretable influence components are derived. The method is applied to data from a longitudinal clinical trial involving patients with epileptic seizures. Even though the data were extensively analyzed in earlier work, the insight gained from the proposed diagnostics, statistically and clinically, is considerable. Possibly, a small but important subgroup of patients has been identified. 相似文献
16.
On the equivalence of case-crossover and time series methods in environmental epidemiology 总被引:2,自引:0,他引:2
The case-crossover design was introduced in epidemiology 15 years ago as a method for studying the effects of a risk factor on a health event using only cases. The idea is to compare a case's exposure immediately prior to or during the case-defining event with that same person's exposure at otherwise similar "reference" times. An alternative approach to the analysis of daily exposure and case-only data is time series analysis. Here, log-linear regression models express the expected total number of events on each day as a function of the exposure level and potential confounding variables. In time series analyses of air pollution, smooth functions of time and weather are the main confounders. Time series and case-crossover methods are often viewed as competing methods. In this paper, we show that case-crossover using conditional logistic regression is a special case of time series analysis when there is a common exposure such as in air pollution studies. This equivalence provides computational convenience for case-crossover analyses and a better understanding of time series models. Time series log-linear regression accounts for overdispersion of the Poisson variance, while case-crossover analyses typically do not. This equivalence also permits model checking for case-crossover data using standard log-linear model diagnostics. 相似文献
17.
Robert R. Sokal Richard L. Jantz Barbara A. Thomson 《American journal of physical anthropology》1996,100(1):35-47
We describe the geographic variation patterns of 236 dermatoglyphic variables (118 for each sex) for 74 samples in Europe. Using principal components analysis and rotating to simple structure, we simplified these patterns to the first 20 axes, representing 74.2% of covariation. We then used heterogeneity tests, interpolated surfaces, one-dimensional and directional correlograms, and distances between correlograms to analyze the factor scores of these 20 axes. We also ordinated the 74 localities. The data are remarkable for showing little spatial autocorrelation, despite significant heterogeneity among localities. Only three factor axes exhibit consistently significant correlograms, indicating that there are few spatial patterns in the original variables in Europe. Almost all correlations between pairs of variables occur within serially homologous character sets and are thus developmentally determined. There is some support for demic diffusion from the southeast in finger patterns and ridge counts. We compare these results to those of previous studies and note that Lapps and Icelanders are outliers with respect to both genetics and finger tip variables, whereas Tatars are outliers with respect to craniometrics and dermatoglyphics. © 1996 Wiley-Liss, Inc. 相似文献
18.
Recent work on Bayesian inference of disease mapping models discusses the advantages of the fully Bayesian (FB) approach over its empirical Bayes (EB) counterpart, suggesting that FB posterior standard deviations of small-area relative risks are more reflective of the uncertainty associated with the relative risk estimation than counterparts based on EB inference, since the latter fail to account for the variability in the estimation of the hyperparameters. In this article, an EB bootstrap methodology for relative risk inference with accurate parametric EB confidence intervals is developed, illustrated, and contrasted with the hyperprior Bayes. We elucidate the close connection between the EB bootstrap methodology and hyperprior Bayes, present a comparison between FB inference via hybrid Markov chain Monte Carlo and EB inference via penalized quasi-likelihood, and illustrate the ability of parametric bootstrap procedures to adjust for the undercoverage in the \"naive\" EB interval estimates. We discuss the important roles that FB and EB methods play in risk inference, map interpretation, and real-life applications. The work is motivated by a recent analysis of small-area infant mortality rates in the province of British Columbia in Canada. 相似文献
19.
具有空间自相关残差的回归模型及其应用 总被引:1,自引:1,他引:1
提出了具有空间自相关残差的多变量回归问题,这种残差包括单点、局部和区域化三种尺度.文中提出了两种处理空间自相关的方法:把自相关加入残差协方差作参数的改进估计──相邻相关方法和把残差作区域化最优自相关估计──一般空间自相关方法.用森林对舞毒蛾危害敏感性概率的大范围估计为例,比较了传统回归方法和本文方法间的差异,交叉检验结果表明本文的方法明显优于直接回归方法,这说明加入空间自相关对空间回归问题是必要的. 相似文献
20.
R. R. Sokal R. S. Unnasch 《Journal of Zoological Systematics and Evolutionary Research》1988,26(2):73-88
The geographic covariation of the eastern cottonwood Populus deltoides with three different gallforming aphids in the genus Pemphigus is studied over eastern North America. Ten vegetative Populus characters were analyzed together with 32 stem mother, slate und gall dimension characters in Pemphigus populicaulis und in two morphs of P. populitransversus. The number of locality samples studied ranges from 56 to 157. The covariation between host und parasite characters was examined by correlation analysis und canonical correlations und shown to be slight. Multiple regressions of factor scores of Pemphigus variables on Populus characters show relatively low percentages of explained variance und few significant partial regression coefficients. Spatial autocorrelation analyses of Pemphigus factor scores und of their residuals on Populus variables demonstrated largely independent spatial structure of the two sets of variables. These findings were confirmed by multiple Mantel tests of distance matrices based on cottonwood und aphid phenetics und on geography. The undoubtedly close Pemphigus-Populus coevolution over geological time is not reflected in the microevolutionary variation over geographic space. Possible esplanations for these surprising findings are discussed. 相似文献