首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The subcutaneous administration of diethylmaleate (DEM), a drug known previously to deplete liver glutathione (GSH), was shown in rats to cause a severe dose-dependent, rapid and persistent decrease in the glutathione content of the glandular gastric mucosa, a tissue that normally contains extraordinarily high concentrations of GSH. This effect of DEM was accompanied by the occurrence of severe ulcerative lesions of the gastric lining and sometimes also a marked gaseous inflation of the stomach. The acute ulcerative lesions appeared identical to those previously shown to be induced by a variety of physical and/or behavioral stressors in rodents. At least one ulcerogenic experimental stressor (cold-restraint) has been shown previously to lower gastric GSH. Also, a pretreatment (i.e., starvation) that decreases gastric GSH enhances both stress-induced ulcerogenesis and DEM-induced ulcerogenesis. These studies suggest that a possible role for GSH in maintaining the normal homeostasis and integrity of the gastric mucosa should be considered.  相似文献   

2.
The hypoxic and euoxic radiation response for Chinese hamster lung and A549 human lung carcinoma cells was obtained under conditions where their nonprotein thiols, consisting primarily of glutathione (GSH), were depleted by different mechanisms. The GSH conjugating reagent diethylmaleate (DEM) was compared to DL-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathionine biosynthesis. Each reagent depleted cellular GSH to less than 5% of control values. A 2-hr exposure to 0.5 mM DEM or a 4- or 24-hr exposure to BSO at 10 or 1 mM, respectively, depleted cellular GSH to less than 5% of control values. Both agents sensitized cells irradiated under air or hypoxic conditions. When GSH levels are lowered to less than 5% by both agents, hypoxic DEM-treated cells exhibited slightly greater X-ray sensitization than hypoxic BSO-treated cells. The D0's for hypoxic survival curves were as follows: control, 4.87 Gy; DEM, 3.22 Gy; and BSO, 4.30 Gy for the V79 cells and 5.00 Gy versus 4.02 Gy for BSO-treated A549 cells. The D0's for aerobic V79 cells were 1.70 Gy versus 1.13 Gy, DEM, and 1.43 Gy for BSO-treated cells. The D0's for the aerobic A549 were 1.70 and 1.20 for BSO-treated cells. The aerobic and anoxic sensitization of the cells results in the OER's of 2.8 and 3.0 for the DEM- and BSO-treated cells compared to 2.9 for the V79 control A549. BSO-treated cells showed an OER of 3.3 versus 3 for the control. Our results suggest that GSH depletion by either BSO or DEM sensitizes aerobic cells to radiation but does not appreciably alter the OER.  相似文献   

3.
Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 microM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure (t1/2 = 1.6 hr). Removal of BSO resulted in a rapid regeneration of GSH after 50 microM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 microM. Treatment with either of these two concentrations of BSO for up to 14 hr did not affect cell growth or viability. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 microM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. GSH depletion had the effect of shifting the enhancement ratio vs pO2 curve to lower oxygen tensions, making oxygen appear more efficient by a factor of approximately 2, based on the pO2 required to give an OER of 2.0. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. Thus MISO appeared to be more efficient in GSH-depleted cells by a factor of 13.5. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone (ER = 1.29-1.41). The effect of GSH depletion was approximately equal at all sensitizer concentrations tested, except at high oxygen tensions, where the effect was insignificantly small. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms.  相似文献   

4.
Naphthalene is metabolized in the lung and liver to reactive intermediates by cytochrome P450 enzymes. These reactive species deplete glutathione, covalently bind to proteins, and cause necrosis in Clara cells of the lung. The importance of glutathione loss in naphthalene toxicity was investigated by using the glutathione prodrugs (glutathione monoethylester or cysteine-glutathione mixed disulfide) to maintain glutathione pools during naphthalene exposure. Mice given a single intraperitoneal injection of naphthalene (1.5 mmol/kg) were treated with either prodrug (2.5 mmol/kg) 30 min later. Both compounds effectively maintained glutathione levels and decreased naphthalene-protein adducts in the lung and liver. However, cysteine-glutathione mixed disulfide was more effective at preventing Clara cell injury. To study the prodrugs in Clara cells without the influence of hepatic naphthalene metabolism and circulating glutathione, dose-response and time-course studies were conducted with intrapulmonary airway explant cultures. Only the ester of glutathione raised GSH in vitro; however, both compounds limited protein adducts and cell necrosis. In vitro protection was not associated with decreased naphthalene metabolism. We conclude that (1) glutathione prodrugs can prevent naphthalene toxicity in Clara cells, (2) the prodrugs effectively prevent glutathione loss in vivo, and (3) cysteine-glutathione mixed disulfide prevents naphthalene injury in vitro without raising glutathione levels.  相似文献   

5.
Summary The Escherichia coli auxotroph K1060 has been grown in a medium supplemented with either oleic acid (18 : 1) or linolenic acid (18 : 3) and its radiosensitivity and thermosensitivity established using bacterial cell survival as the assay system. No difference in radiosensitivity was observed when oleic and linolenic grown cells were exposed to-radiation at room temperature. When heated at 49° C linolenic grown cells were more sensitive than oleic grown cells.To investigate whether soluble -SH compounds, e.g., glutathione (GSH), were critical in protecting cells against radiation or heat, studies were performed using cells depleted of -SH by incubation with diethylmaleate (DEM). After reduction of water-soluble non-protein thiol compounds to 25% (10 mM DEM treatment) of control value, no major changes in radiosensitivity under oxic conditions were found. Radioresistance increased slightly when irradiation was performed under hypoxic conditions. Thermoresistance was clearly stimulated after DEM treatments between 1 and 10 mM DEM.The main conclusion of these experiments is that lowering the cellular level of reduced glutathione may not generally be correlated with a higher radio- and thermosensitivity.  相似文献   

6.
Gallic acid (GA) is generally distributed in a variety of plants and foods, and its various biological effects have been reported. Here, we investigated the effects of GA and/or caspase inhibitors on Calu-6 and A549 lung cancer cells in relation to cell death and reactive oxygen species (ROS). The growths of Calu-6 and A549 cells were diminished with an IC(50) of approximately 30 and 150 μM GA at 24 h, respectively. GA also inhibited the growth of primary human pulmonary fibroblast (HPF) cells with an IC(50) of about 300 μM. GA induced apoptosis and/or necrosis in lung cancer cells, which was accompanied by the loss of mitochondrial membrane potential (MMP, ΔΨ(m)). The percents of MMP (ΔΨ(m)) loss and death cells by GA were lower in A549 cells than in Calu-6 cells. Caspase inhibitors did not significantly rescued lung cancer cells from GA-induced cell death. GA increased ROS levels including O(2) (?-) and induced GSH depletion in both lung cancer cells. Z-VAD (pan-caspase inhibitor) did not decrease ROS levels and GSH depleted cell number in GA-treated lung cancer cells. In conclusion, GA inhibited the growth of lung cancer and normal cells. GA-induced lung cancer cell death was accompanied by ROS increase and GSH depletion.  相似文献   

7.
Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH(4)) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH(4) synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH(4) levels completely protected nondopaminergic neurons against it. Our results suggest that BH(4) functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH(4) levels may contribute to the pathogenesis of PD.  相似文献   

8.
The objectives of this study were to investigate whether oral supplementation of L-2-oxothiazolidine-4-carboxylate (OTC) is effective for increasing tissue glutathione (GSH) concentrations in rats fed a diet very low (0.5%) in protein-a model of wasting malnutrition-and to determine the efficacy of OTC for protection against pulmonary oxygen toxicity. Weanling rats, fed a 0.5 or 15% protein diet for 2 wk, were given an oral supplement of OTC, and tissue GSH concentrations were measured over a 24 h period. OTC supplementation to rats fed 0.5% protein significantly increased GSH concentrations in liver and lung, but not in kidney and blood, when compared with the 0.5% protein unsupplemented group. The liver GSH concentration in the 0.5% protein OTC-supplemented group was higher than the 15% control group. Daily supplementation of OTC protected rats from pulmonary oxygen toxicity during 4 days of 85% oxygen exposure as determined by lung-to-body weight ratios and in vivo proton magnetic resonance imaging. Although hyperoxia exposure increased lung GSH concentrations in all groups, OTC supplementation was effective for increasing lung GSH concentration in rats fed the 0.5% protein diet. This study demonstrated that oral administration of OTC to wasting malnourished rats is an effective procedure to increase GSH concentration rapidly in target organs such as lung, and that daily supplementation of a low dose of OTC has a sustained effect to protect against pulmonary oxygen toxicity during 4 days of hyperoxia exposure.  相似文献   

9.
In Parkinson's disease (PD) and incidental Lewy body disease glutathione levels in the substantia nigra are decreased by 40-50%. Both peroxynitrite (ONOO ) and alterations in the metabolism of sulfur-containing amino acids have been implicated in PD and we have previously shown that sulfite and ONOO- exert synergistic toxicity to a neuronal cell line. This article presents data to show that this synergistic toxicity of sulfite and ONOO- is greatly enhanced by 50% depletion of cellular glutathione levels. The toxicity of sulfite is also slightly enhanced. Neurones with decreased glutathione may be at increased risk from sulfite and especially from the synergistic damaging effects of ONOO- and sulfite. Because sulfite is present normally in the brain as a product of cysteine metabolism, and because increased ONOO- formation has been reported in PD, these events might contribute to neuronal cell death.  相似文献   

10.
Replacement of media in cell cultures during exposure to hyperoxia was found to alter oxygen toxicity. Following 100 hr of exposure to 95% or 80% O2, the surviving fraction (SF) of Chinese hamster fibroblasts, as assayed by clonogenicity, was less than 1 × 10?3 when the culture media was replaced only at the onset of the O2 exposure. Media replacement every 24 hr throughout the hyperoxic exposure resulted in SFs of 1.7 × 10?1 (95% O2) and 1.9 × 10?1 (80% O2) at 95 hr. Cellular resistance to and metabolism of 4-hydroxy-2-nonenal (4HNE), a cytotoxic byproduct of lipid peroxidation, was examined in cells 24 hr following exposure to 80% O2 for 144 hr with media replacement. These O2-exposed cells were resistant to 4HNE, requiring 2.6 times as long in 80 μM 4HNE to reach 30% survival as compared to density-matched normoxia control. Furthermore, during 40 and 60 min of exposure to 4HNE, the O2-preexposed cells metabolized greater quantities of 4HNE (fmole/cell) relative to control. The activity of glutathione S-transferase (GST), an enzyme believed to be involved with the detoxification of 4HNE, was significantly increased in the O2-preexposed cells compared with controls. Catalase activity was significantly increased, but no change was found in total glutathione content, glutathione peroxidase, manganese superoxide dismutase, and copper-zinc superoxide dismutase activities at the time of 4HNE treatment in the O2-preexposed cells relative to density-matched control. The results demonstrate that in vitro tolerance to the cytotoxic effects of hyperoxia can be achieved through media replacement during O2 exposure. Tolerance to oxygen toxicity conferred resistance to the cytotoxic effects of 4HNE, possibly through GST-catalyzed detoxification. These results provide further support for the hypothesis that toxic aldehydic byproducts of lipid peroxidation contribute to hyperoxic injury.  相似文献   

11.
This investigation tested the hypothesis that depletion of intracellular glutathione, in contrast to its oxidation, could lead to non-native oxidation of protein thiols, thereby trapping proteins in an unstable conformation. Chinese hamster cells were exposed to the α,β-unsaturated dicarboxylic acid diethylmaleate in order to produce rapid gluthathione (GSH) depletion without oxidation. Measurement of the fluorescence of oxidized 2′,7′-dichlorofluorescein diacetate indicated that reactive oxygen species accumulated in GSH depleted cells. Glutathione depletion was found to alter protein thiol/disulfide exchange ratios such that 17 to 23 nmol of protein SH/mg protein underwent oxidation. Differential scanning calorimetry (DSC) of glutathione depleted cells yielded a profile of specific heat capacity versus temperature that was characteristic of cells containing destabilized and denatured protein. In addition, cells depleted of glutathione exhibited a two-fold increase in NP-40 insoluble protein. These results indicate that depletion of intracellular glutathione caused oxidation of protein thiols, protein denaturation and aggregation and provide a mechanism to explain how GSH depletion can initiate stress responses.  相似文献   

12.
The effect of glutathione depletion on cellular toxicity of cadmium was investigated in a subpopulation (T27) of human lung carcinoma A549 cells with coordinately high glutathione levels and Cd++-resistance. Cellular glutathione levels were depleted by exposing the cells to diethyl maleate or buthionine sulfoximine. Depletion was dose-dependent. Exposure of the cells to 0.5 mM diethyl maleate for 4 hours or to 10 mM buthionine sulfoximine for 8 hours eliminated the threshold for Cd++ cytotoxic effect and deccreased the LD50S. Cells that were pretreated with 0.5 mM diethyl maleate or 10 mM buthionine sulfoximine and then exposed to these same concentrations of diethyl maleate or buthionine sulfoximine during the subsequent assay for colony forming efficiency produced no colonies, reflecting an enhanced sensitivity to these agents at low cell density. Diethyl maleate was found to be more cytotoxic than buthionine sulfoximine. Synergistic cytotoxic effects were observed in the response of diethyl maleate pretreated cells exposed to Cd++. Thus the results demostrated that depletion of most cellular glutathione in A549-T27 cells prior to Cd++ exposure sensitizes them to the agent's cytotoxic effects. Glutathione thus may be involved in modulating the early cellular Cd++ cytotoxic response. Comparison of reduced glutathione levels and of Cd++ cytotoxic responses in buthionine sulfoximine-treated A549-T27 cells with those levels in other, untreated normal and tumor-derived cells suggests that the higher level of glutathione in A549-T27 is not the sole determinant of its higher level of Cd++ resistance.Abbreviations BSO DL-buthionine-(R,S)-sulfoximine - DEM diethyl maleate - DMSO dimethyl sulfoxide - GSH reduced glutathione - MT metallothionein  相似文献   

13.
14.
Reactive oxygen species (ROS) play an essential role in the survival and progression of cancer. Moderate oxidative stress drives proliferation, whereas high levels of ROS induce cytotoxicity. Compared to cancer cells, healthy cells often exhibit lower levels of oxidative stress. Elevation of cellular ROS levels by small molecules could therefore induce cancer-specific cytotoxicity. We have employed high-throughput phenotypic screening to identify inducers of ROS accumulation. We found 4,5-dihalo-2-methylpyridazin-3-one (DHMP) and 2,3,4,5(6)-tetrachloro-6(5)-methylpyridine (TCMP) moieties to strongly deplete GSH, to cause ROS accumulation and to induce cell death. Small molecules containing these fragments will most likely share the same properties and should therefore be carefully considered in the development of bioactive molecules.  相似文献   

15.
In a previous work, it was shown that in cells after a decrease of cellular glutathione content, toxic zinc effects, such as protein synthesis inhibition or GSSG (glutathione, oxidized form) increases, were enhanced. In this study, zinc toxicity was determined by detection of methionine incorporation as a parameter of protein synthesis and GSSG increase in various lung cell lines (A549, L2, 11Lu, 16Lu), dependent on enhanced GSSG reductase activities and changed glutathione contents. After pretreatment of cells with dl-buthionine-[R,S]-sulfoximine (BSO) for 72 h, cellular glutathione contents were decreased to 15–40% and GSSG reductase activity was increased to 120–135% in a concentration-dependent manner. In BSO pretreated cells, the IC50 values of zinc for methionine incorporation inhibition were unchanged as compared to cells not pretreated. The GSSG increase in BSO pretreated cells by zinc was enhanced in L2, 11Lu, and 16Lu cells, whereas in A549 cells, the GSSG increase by zinc was enhanced only after pretreatment with the highest BSO concentration. Inhibition of GSSG reductase in alveolar epithelial cells was observed at lower zinc concentrations than needed for methionine incorporation inhibition, whereas in fibroblastlike cells, inhibition of GSSG reductase occurred at markedly higher zinc concentrations as compared to methionine incorporation inhibition. These results demonstrate that GSSG reductase is an important factor in cellular zinc susceptibility. We conclude that reduction of GSSG is reduced in zinc-exposed cells. Therefore, protection of GSH oxidation by various antioxidants as well as enhancement of GSH content are expected to be mechanisms of diminishing toxic cellular effects after exposure to zinc.  相似文献   

16.
Mitochondrial glutathione depletion by glutamine in growing tumor cells   总被引:3,自引:0,他引:3  
The effect of L-glutamine (Gln) on mitochondrial glutathione (mtGSH) levels in tumor cells was studied in vivo in Ehrlich ascites tumor (EAT)-bearing mice. Tumor growth was similar in mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln) or a nutritionally complete elemental diet (SD). As compared with non-tumor-bearing mice, tumor growth caused a decrease of blood Gln levels in mice fed an SD but not in those fed a GED. Tumor cells in mice fed a GED showed higher glutaminase and lower Gln synthetase activities than did cells isolated from mice fed an SD. Cytosolic glutamate concentration was 2-fold higher in tumor cells from mice fed a GED ( approximately 4 mM) than in those fed an SD. This increase in glutamate content inhibited GSH uptake by tumor mitochondria and led to a selective depletion of mitochondrial GSH (mtGSH) content (not found in mitochondria of normal cells such as lymphocytes or hepatocytes) to approximately 57% of the level found in tumor mitochondria of mice fed an SD. In tumor cells of mice fed a GED, 6-diazo-5-norleucine- or L-glutamate-gamma-hydrazine-induced inhibition of glutaminase activity decreased cytosolic glutamate content and restored GSH uptake by mitochondria to the rate found in EAT cells of mice fed an SD. The partial loss of mtGSH elicited by Gln did not affect generation of reactive oxygen intermediates (ROIs) or mitochondrial functions (e.g., intracellular peroxide levels, O(2)(-)(*) generation, mitochondrial membrane potential, mitochondrial size, adenosine triphosphate and adenosine diphosphate contents, and oxygen consumption were found similar in tumor cells isolated from mice fed an SD or a GED); however, mitochondrial production ROIs upon TNF-alpha stimulation was increased. Our results demonstrate that glutamate derived from glutamine promotes an inhibition of GSH transport into mitochondria, which may render tumor cells more susceptible to oxidative stress-induced mediators.  相似文献   

17.
Induction of CYP2E1 by ethanol is one mechanism by which ethanol causes oxidative stress and alcohol liver disease. Although CYP2E1 is predominantly found in the endoplasmic reticulum, it is also located in rat hepatic mitochondria. In the current study, chronic alcohol consumption induced rat hepatic mitochondrial CYP2E1. To study the role of mitochondrial targeted CYP2E1 in generating oxidative stress and causing damage to mitochondria, HepG2 lines overexpressing CYP2E1 in mitochondria (mE10 and mE27 cells) were established by transfecting a plasmid containing human CYP2E1 cDNA lacking the hydrophobic endoplasmic reticulum targeting signal sequence into HepG2 cells followed by G418 selection. A 40-kDa catalytically active NH2-terminally truncated form of CYP2E1 (mtCYP2E1) was detected in the mitochondrial compartment in these cells by Western blot analysis. Cell death caused by depletion of GSH by buthionine sulfoximine (BSO) was increased in mE10 and mE27 cells as compared with cells transfected with empty vector (pCI-neo). Antioxidants were able to abolish the loss of cell viability. Increased levels of reactive oxygen species and mitochondrial 3-nitrotyrosine and 4-hydroxynonenal protein adducts and decreased mitochondrial aconitase activity and mitochondrial membrane potential were observed in mE10 and mE27 cells treated with BSO. The mitochondrial membrane stabilizer, cyclosporine A, was also able to protect these cells from BSO toxicity. These results revealed that CYP2E1 in the mitochondrial compartment could induce oxidative stress in the mitochondria, damage mitochondria membrane potential, and cause a loss of cell viability. The accumulation of CYP2E1 in hepatic mitochondria induced by ethanol consumption might play an important role in alcohol liver disease.  相似文献   

18.
Glutathione (GSH) depletion is the earliest biochemical alteration shown to date in brains of Parkinson's disease patients. However, data from animal models show that GSH depletion by itself is not sufficient to induce nigral degeneration. We have previously shown that non-toxic inhibition of GSH synthesis with l-buthionine-(S,R)-sulfoximine in primary midbrain cultures transforms a nitric oxide (NO) neurotrophic effect, selective for dopamine neurons, into a toxic effect with participation of guanylate cyclase (GC) and cGMP-dependent protein kinase (PKG) (Canals, S., Casarejos, M. J., de Bernardo, S., Rodríguez-Martín, E., and Mena, M. A. (2001) J. Neurochem. 79, 1183-1195). Here we demonstrate that arachidonic acid (AA) metabolism through the 12-lipoxygenase (12-LOX) pathway is also central for this GSH-NO interaction. LOX inhibitors (nordihydroguaiaretic acid and baicalein), but not cyclooxygenase (indomethacin) or epoxygenase (clotrimazole) ones, prevent cell death in the culture, even when added 10 h after NO treatment. Furthermore, the addition of AA to GSH-depleted cultures precipitates a cell death process that is indistinguishable from that initiated by NO in its morphology, time course, and 12-LOX, GC, and PKG dependence. The first AA metabolite through the 12-LOX enzyme, 12-hydroperoxyeicosatetraenoic acid, induces cell death in the culture, and its toxicity is greatly enhanced by GSH depletion. In addition we show that if GSH synthesis inhibition persists for up to 4 days without any additional treatment, it will induce a cell death process that also depends on 12-LOX, GC, and PKG activation. In this study, therefore, we show that the signaling pathway AA/12-LOX/12-HPETE/GC/PKG may be important in several pathologies in which GSH decrease has been documented, such as Parkinson's disease. The potentiating effect of NO over such a signaling pathway may be of relevance as part of the cascade of events leading to and sustaining nerve cell death.  相似文献   

19.
20.
The purpose of this study was to measure the effects of high doses of corticosteroids on the response to breathing 100% O2 in sheep. Sheep were prepared for chronic measurement of vascular pressures, cardiac output, gas exchange, and for collection of lung lymph. Tracheostomies were made for accurate delivery of gas mixtures. Eight sheep received methylprednisolone 30 mg/kg body wt every 6 h for eight doses, four for the first 48 h, and four for the final 24-48 h of 100% O2 breathing. Eight control sheep breathed 100% O2 without methylprednisolone, four sheep breathed compressed air without methylprednisolone, and two breathed compressed air and received methylprednisolone. Sheep had daily measurements of hypoxic vasoconstriction (fractional concentration of O2 in inspired gas = 0.12), gas exchange, lymph flow, and lymph and plasma protein concentration. Polymorphonuclear leukocyte (granulocyte) function in experimental and control sheep was assessed ex vivo by tests of chemotaxis, aggregation, and superoxide production. The number of granulocytes in peripheral lung was measured in biopsy tissue taken at the time of original surgery and postmortem. Methylprednisolone did not affect the time course nor magnitude of gas exchange abnormality, lymph flow and composition, loss of hypoxic vasoconstriction, lung granulocyte accumulation, nor postmortem lung water caused by 100% O2 breathing. Sheep receiving methylprednisolone had a shorter survival by several h, independent of the timing of the drug. Granulocytes from methylprednisolone-treated sheep showed normal function ex vivo by all three assays. We conclude that high doses of methylprednisolone unfavorably affect the rate and progression of lung injury in sheep breathing 100% O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号