首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neotropical ants in the tribe Attini share the obligatory behaviour of cultivating fungi as an essential food source. Of this complex and well-studied mutualism, little is known about the biological traits of the phylogenetically basal attines, which may offer important clues to the origins and early evolution of this intricate symbiosis. In this paper we focus on the founding of new nests, a key to understanding evolutionary changes in many social insects, which has received comparatively little attention in attine ants. We present a comparative survey of nest-founding behaviour in Attini, based on 441 foundress nests of 20 species in eight attine genera. In general, attine queens are semiclaustral and haplometrotic when founding nests. We show that attine foundresses of most species use an inert platform (discarded forewings, roots, or rocks) on which the incipient fungal garden is physically isolated during nest foundation, and they conduct semiclaustral foundation. This behaviour is not shared with Atta , which places the incipient garden directly on the soil floor of the initial nest chamber, and conducts claustral foundation. Nest-founding maps congruently onto the major clades in attine phylogeny, suggesting that the behavioural mechanisms used to isolate the incipient garden may have been key innovations in the early evolution of attine fungiculture. The evolutionary sequence of gardening in Attini suggests a transformation series from retention and use of detached wings (suspended from the chamber ceiling or placed over the chamber floor) to root-suspension, and finally use of bare soil. We also discuss transitions from semiclaustral to claustral founding, as well as from haplometrosis to pleometrosis, from ecological and evolutionary perspectives.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 39–48.  相似文献   

3.
Reynolds HT  Currie CR 《Mycologia》2004,96(5):955-959
Fungi in the genus Escovopsis are known only from the fungus gardens of attine ants. Previous work has established that these anamorphic fungi, allied with the Hypocreales, are specialized and potentially virulent parasites of the ancient mutualism between attine ants and their fungal cultivars. It is unclear whether the primary nutrient source for the pathogen is the mutualist fungal cultivar or the vegetative substrate placed on the gardens by the ants. Here, we determine whether Escovopsis weberi is a parasite of the fungal cultivar, a competitor for the leaf substrate, or both. Bioassays reveal that E. weberi exhibits rapid growth on pure cultivar and negligible growth on sterilized leaf fragments. Light microscopy examination of hyphalhyphal interactions between E. weberi and the ant fungal cultivar indicate that E. weberi, unlike invasive necrotrophs that always penetrate host hyphae, can secrete compounds that break down host mycelium before contact occurs. Thus, E. weberi is a necrotrophic parasite of the fungal cultivar of attine ants.  相似文献   

4.
Partner fidelity through vertical symbiont transmission is thought to be the primary mechanism stabilizing cooperation in the mutualism between fungus‐farming (attine) ants and their cultivated fungal symbionts. An alternate or additional mechanism could be adaptive partner or symbiont choice mediating horizontal cultivar transmission or de novo domestication of free‐living fungi. Using microsatellite genotyping for the attine ant Mycocepurus smithii and ITS rDNA sequencing for fungal cultivars, we provide the first detailed population genetic analysis of local ant–fungus associations to test for the relative importance of vertical vs. horizontal transmission in a single attine species. M. smithii is the only known asexual attine ant, and it is furthermore exceptional because it cultivates a far greater cultivar diversity than any other attine ant. Cultivar switching could permit the ants to re‐acquire cultivars after garden loss, to purge inferior cultivars that are locally mal‐adapted or that accumulated deleterious mutations under long‐term asexuality. Compared to other attine ants, symbiont choice and local adaptation of ant–fungus combinations may play a more important role than partner‐fidelity feedback in the co‐evolutionary process of M. smithii and its fungal symbionts.  相似文献   

5.
Fungus-growing attine ants maintain a mutualistic relationship with basidiomycete fungi which they cultivate for food. In addition to the fungal partner, attine ant colonies harbor a myriad of microorganisms, including the genus Escovopsis, fungal parasites of the ant crops. Because Escovopsioides nivea is phylogenetically close to Escovopsis, previous studies assumed it has a negative interaction in the ant-fungus association. Here, we present an extended phylogeny of E. nivea based on new collections from different attine ant genera found in different localities. We also carried out co-culture experiments between E. nivea with different fungal cultivars. Our results suggest E. nivea is a symbiont of attine ant colonies, which inhibits the growth of fungal crops, supporting the hypothesis it is antagonistic to the system. However, the patterns of interaction between E. nivea and fungal crops differ from those shown by Escovopsis, suggesting a different evolution from that of the parasite.  相似文献   

6.
A century of research on fungus-growing ants (Attini, Formicidae) has ignored the cultivated fungi as passive domesticates and viewed the attine fungicultural symbiosis as an integrated unit dominated by the evolutionary interests of the ant farmers. This article takes a different perspective and explores first the evolutionary interests and leverages of the fungal cultivars, then dissects eight potential evolutionary conflicts between ants and cultivars. Three types of ant-cultivar conflict are examined in depth. First, ant-cultivar conflict over the ant sex ratio is predicted because the cultivars are dispersed by female foundresses but not by males; cultivars thus may be selected to bias the ant sex ratio toward females. Second, ant-cultivar conflict over fungal sexual reproduction exists if the fungi are able to escape from the symbiosis and live independently, as is implied by phylogenetic analyses of the fungi; this conflict is exacerbated in colonies that experience queen death or senescence. A literature review reveals that sexual fruiting of attine cultivars is more common than has been traditionally realized and often occurs in moribund colonies. Third, the routine transplanting of fungal mycelium by ants could generate, through sensory-biased symbiont choice, selection favoring fungal features that increase the likelihood of transplantation within nests (symbiont drive) but that are detrimental to the survival of the whole colony. A balanced perspective incorporating both ant and fungal interests emerges as a more appropriate framework than the traditional myrmicocentric perspective. Indeed, the attine symbiosis offers unique experimental opportunities (cultivar switch experiments) to unravel the evolutionary dynamics of conflict and cooperation between ant and fungal partners.  相似文献   

7.
To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus‐growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher‐attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower‐attine lineages. Higher‐attine fungi form two clades, Clade‐A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade‐B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade‐A fungi because some leafcutter species ranging across South America cultivate Clade‐B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade‐B fungi because some Trachymyrmex species cultivate Clade‐A fungi and other Trachymyrmex species cultivate fungi known so far only from lower‐attine ants; (iii) in some locations, single higher‐attine ant species or closely related cryptic species cultivate both Clade‐A and Clade‐B fungi; and (iv) ant–fungus co‐evolution among higher‐attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade‐A or Clade‐B fungi, sustaining with either cultivar‐type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade‐A or Clade‐B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade‐A), but must derive from ant–fungus synergisms and unique ant adaptations.  相似文献   

8.
Switching of symbiotic partners pervades most mutualisms, despite mechanisms that appear to enforce partner fidelity. To investigate the interplay of forces binding and dissolving mutualistic pairings, we investigated partner fidelity at the population level in the attine ant-fungal cultivar mutualism. The ants and their cultivars exhibit both broad-scale co-evolution, as well as cultivar switching, with short-term symbiont fidelity maintained by vertical transmission of maternal garden inoculates via dispersing queens and by the elimination of alien cultivar strains. Using microsatellite markers, we genotyped cultivar fungi associated with five co-occurring Panamanian attine ant species, representing the two most derived genera, leaf-cutters Atta and Acromyrmex. Despite the presence of mechanisms apparently ensuring the cotransmission of symbiont genotypes, different species and genera of ants sometimes shared identical fungus garden genotypes, indicating widespread cultivar exchange. The cultivar population was largely unstructured with respect to host ant species, with only 10% of the structure in genetic variance being attributable to partitioning among ant species and genera. Furthermore, despite significant genetic and ecological dissimilarity between Atta and Acromyrmex, generic difference accounted for little, if any, variance in cultivar population structure, suggesting that cultivar exchange dwarfs selective forces that may act to create co-adaptive ant-cultivar combinations. Thus, binding forces that appear to enforce host fidelity are relatively weak and pairwise associations between cultivar lineages and ant species have little opportunity for evolutionary persistence. This implicates that mechanisms other than partner fidelity feedback play important roles in stabilizing the leafcutter ant-fungus mutualism over evolutionary time.  相似文献   

9.
Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ~30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.  相似文献   

10.
Ant-fungus associations are well known from attine ants, whose nutrition is based on a symbiosis with basidiomycete fungi. Otherwise, only a few non-nutritional ant-fungus associations have been recorded to date. Here we focus on one of these associations involving Allomerus plant-ants that build galleried structures on their myrmecophytic hosts in order to ambush prey. We show that this association is not opportunistic because the ants select from a monophyletic group of closely related fungal haplotypes of an ascomycete species from the order Chaetothyriales that consistently grows on and has been isolated from the galleries. Both the ants' behaviour and an analysis of the genetic population structure of the ants and the fungus argue for host specificity in this interaction. The ants' behaviour reveals a major investment in manipulating, growing and cleaning the fungus. A molecular analysis of the fungus demonstrates the widespread occurrence of one haplotype and many other haplotypes with a lower occurrence, as well as significant variation in the presence of these fungal haplotypes between areas and ant species. Altogether, these results suggest that such an interaction might represent an as-yet undescribed type of specific association between ants and fungus in which the ants cultivate fungal mycelia to strengthen their hunting galleries.  相似文献   

11.
Almost all of the more than 200 species of fungus-growing ants (Formicidae: Attini) cultivate litter-decomposing fungi in the family Lepiotaceae (Basidiomycota: Agaricales). The single exception to this rule is a subgroup of ant species within the lower attine genus Apterostigma, which cultivate pterulaceous fungi distantly related to the Lepiotaceae. Comparison of cultivar and ant phylogenies suggests that a switch from lepiotaceous to pterulaceous fungiculture occurred only once in the history of the fungus-growing ants. This unique switch occurred after the origin of the genus Apterostigma, such that the basal Apterostigma lineages retained the ancestral attine condition of lepiotaceous fungiculture, and none of the Apterostigma lineages in the monophyletic group of pterulaceous fungiculturists are known to have reverted back to lepiotaceous fungiculture. The origin of pterulaceous fungiculture in attine ants may have involved a unique transition from the ancestral cultivation of litter-decomposing lepiotaceous fungi to the cultivation of wood-decomposing pterulaceous fungi. Phylogenetic analyses further indicate that distantly related Apterostigma ant species sometimes cultivate the same cultivar lineage, indicating evolutionarily frequent, and possibly ongoing, exchanges of fungal cultivars between Apterostigma ant species. The pterulaceous cultivars form two sister clades, and different Apterostigma ant lineages are invariably associated with, and thus specialized on, only one of the two cultivar clades. However, within clades Apterostigma ant species are able to switch between fungi. This pattern of broad specialization by attine ants on defined cultivar clades, coupled with flexible switching between fungi within cultivar clades, is also found in other attine lineages and appears to be a general phenomenon of fungicultural evolution in all fungus-growing ants.  相似文献   

12.
Leaf‐cutting ants maintain a symbiotic relationship with basidiomycetous fungi cultivated as food. Here, we profiled the non‐symbiotic filamentous fungi in laboratory nests of Atta sexdens rubropilosa submitted to treatments with different toxic bait formulations (using the insecticide sulfluramide as the active ingredient). After treatment, several filamentous fungi were found in different nest compartments. Culture‐dependent techniques recovered a total of 93 fungal isolates comprising 10 genera, 11 species and four unidentified fungi. The genus Penicillium was prevalent in both control and insecticide treatments. Overall, the majority of fungal isolates obtained in this study are commonly found in soil. Escovopsis spp., the specialized parasite of the ant‐fungus mutualism was only recorded in the fungus gardens of nests submitted to the toxic treatments. Moreover, no correlation was found regarding the presence of fungi in the different nest compartments (chi‐square, P > 0.4182). This study reveals that Escovopsis spp. is not the only fungus to overgrow the fungus garden of debilitated nests, thus adding more evidence on the possible negative impacts of such alien fungi. As suggested by previous studies, fast‐growing filamentous fungi likely overgrow the fungus garden in such conditions.  相似文献   

13.
Based on pure culture studies and DNA phylogenetic analyses, black yeasts (Chaetothyriales, Ascomycota) are shown to be widely distributed and important components of numerous plant-ant-fungus networks, independently acquired by several ant lineages in the Old and New World. Data from ITS and LSU nu rDNA demonstrate that a high biodiversity of fungal species is involved. There are two common ant-fungus symbioses involving black yeasts: (1) on the carton walls of ant nests and galleries, and (2) the fungal mats growing within non-pathogenic naturally hollow structures (so-called domatia) provided by myrmecophytic plants as nesting space for ants (ant-plant symbiosis). Most carton- and domatia-inhabiting fungi stem from different phylogenetic lineages within Chaetothyriales, and almost all of the fungi isolated are still undescribed. Despite being closely related, carton and domatia fungi are shown to differ markedly in their morphology and ecology, indicating that they play different roles in these associations. The carton fungi appear to improve the stability of the carton, and several species are commonly observed to co-occur on the same carton. Carton fungi commonly have dark-walled monilioid hyphae, colouring the carton blackish and apparently preventing other fungi from invading the carton. Despite the simultaneous presence of usually several species of fungi, forming complex associations on the carton, little?overlap is observed between carton fungi from different ant species, even those that co-occur in nature, indicating at least some host specificity of fungi. Most fungi present on carton belong to Chaetothyriales, but in a few samples, Capnodiales are also an important component. Carton fungi are difficult to assign to anamorph genera, as most lack conidiation. The domatia fungi are more specific. In domatia, usually only one or two fungal species co-occur, producing a dense layer on living host plant tissue in domatia. They have hyaline or light brown thin-walled hyphae, and are commonly sporulating. In both carton and domatia, the fungal species seem to be specific to each ant-plant symbiosis. Representative examples of carton and domatia ant-fungus symbioses are illustrated. We discuss hypotheses on the ecological significance of the Chaetothyriales associated with ants.  相似文献   

14.
We describe a peculiar fungus-coating behavior of the attine ant Mycetosoritis clorindae, where workers plant fungal mycelium on hibernating nestmates. Hibernating nestmates become ultimately enveloped in a live mycelial coat, remain motionless in this coated state, and essentially become integrated into the garden matrix. The shallow nest architecture of M. clorindae (depth of main garden is 15–30 cm) in southern Brazil forces the ants to overwinter at relatively low temperatures in the topmost soil layer. Fungal coating may help the ants to survive the prolonged periods of immobility during winter. Fungus-planting on attine adults is so far unknown from other attine species, but the behavior parallels the planting of mycelium on larvae and pupae occurring in many attine species. Planting of mycelium on adult nestmates may have been overlooked so far in attine ants because this behavior may occur only in dormant nests, which are least frequently collected. The possible adaptive functions of fungus coatings of hibernating adults and developing brood are likely similar, including for example physical protection, prevention of desiccation, shielding against parasites and predators (e.g., army ants), or defense against diseases.  相似文献   

15.
Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants   总被引:1,自引:1,他引:0  
Insect-associated microbes exhibit a wide range of interactions with their hosts. One example of such interactions is the insect-driven dispersal of microorganisms, which plays an essential role in the ecology of several microbes. To study dispersal of microorganisms by leaf-cutting ants (Formicidae: Attini), we applied culture-dependent methods to identify the filamentous fungi and yeasts found in two different body parts of leaf-cutting ant gynes: the exoskeleton and the infrabuccal pocket. The gynes use the latter structure to store a pellet of the ants’ symbiotic fungus during nest founding. Many filamentous fungi (n = 142) and yeasts (n = 19) were isolated from the gynes’ exoskeleton. In contrast, only seven filamentous fungi and three yeasts isolates were recovered from the infrabuccal pellets, suggesting an efficient mechanism utilized by the gynes to prevent contamination of the symbiotic fungus inoculum. The genus Cladosporium prevailed (78%) among filamentous fungi whereas Aureobasidium, Candida and Cryptococcus prevailed among yeasts associated with gynes. Interestingly, Escovopsis, a specialized fungal pathogen of the leaf-cutting ant-fungus symbiosis, was not isolated from the body parts or from infrabuccal pellets of any gynes sampled. Our results suggest that gynes of the leaf-cutter ants Atta laevigata and A. capiguara do not vertically transmit any particular species of yeasts or filamentous fungi during the foundation of a new nest. Instead, fungi found in association with gynes have a cosmopolitan distribution, suggesting they are probably acquired from the environment and passively dispersed during nest foundation. The possible role of these fungi for the attine ant–microbial symbiosis is discussed.  相似文献   

16.
The fungus‐growing ants and their fungal cultivars constitute a classic example of a mutualism that has led to complex coevolutionary dynamics spanning c. 55–65 Ma. Of the five agricultural systems practised by fungus‐growing ants, higher‐attine agriculture, of which leaf‐cutter agriculture is a derived subset, remains poorly understood despite its relevance to ecosystem function and human agriculture across the Neotropics and parts of North America. Among the ants practising higher‐attine agriculture, the genus Trachymyrmex Forel, as currently defined, shares most‐recent common ancestors with both the leaf‐cutter ants and the higher‐attine genera Sericomyrmex Mayr and Xerolitor Sosa‐Calvo et al. Although previous molecular‐phylogenetic studies have suggested that Trachymyrmex is a paraphyletic grade, until now insufficient taxon sampling has prevented a full investigation of the evolutionary history of this group and limited the possibility of resolving its taxonomy. Here we describe the results of phylogenetic analyses of 38 Trachymyrmex species, including 27 of the 49 described species and at least 11 new species, using four nuclear markers, as well as phylogenetic analyses of the fungi cultivated by 23 species of Trachymyrmex using two markers. We generated new genetic data for 112 ants (402 new gene sequences) and 95 fungi (153 new gene sequences). Our results corroborate previous findings that Trachymyrmex, as currently defined, is paraphyletic. We propose recognizing two new genera, Mycetomoellerius gen.n. and Paratrachymyrmex gen.n. , and restricting the continued use of Trachymyrmex to the clade of nine largely North American species that contains the type species [Trachymyrmex septentrionalis (McCook)] and that is the sister group of the leaf‐cutting ants. Our fungal cultivar phylogeny generally corroborates previously observed broad patterns of ant–fungus association, but it also reveals further violations of those patterns. Higher‐attine fungi are divided into two groups: (i) the single species Leucoagaricus gongylophorus (Möller); and (ii) its sister clade, consisting of multiple species, recently referred to as Leucoagaricus Singer ‘clade B’. Our phylogeny indicates that, although most non‐leaf‐cutting higher‐attine ants typically cultivate species in clade B, some species cultivate L. gongylophorus, whereas still others cultivate fungi typically associated with lower‐attine agriculture. This indicates that the attine agricultural systems, which are currently defined by associations between ants and fungi, are not entirely congruent with ant and fungal phylogenies. They may, however, be correlated with as yet poorly understood biological traits of the ants and/or of their microbiomes.  相似文献   

17.
Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites.  相似文献   

18.
The mutualism between leaf-cutting ants and their fungal symbionts revolves around processing and inoculation of fresh leaf pulp in underground fungus gardens, mediated by ant fecal fluid deposited on the newly added plant substrate. As herbivorous feeding often implies that growth is nitrogen limited, we cloned and sequenced six fungal proteases found in the fecal fluid of the leaf-cutting ant Acromyrmex echinatior and identified them as two metalloendoproteases, two serine proteases and two aspartic proteases. The metalloendoproteases and serine proteases showed significant activity in fecal fluid at pH values of 5–7, but the aspartic proteases were inactive across a pH range of 3–10. Protease activity disappeared when the ants were kept on a sugar water diet without fungus. Relative to normal mycelium, both metalloendoproteases, both serine proteases and one aspartic protease were upregulated in the gongylidia, specialized hyphal tips whose only known function is to provide food to the ants. These combined results indicate that the enzymes are derived from the ingested fungal tissues. We infer that the five proteases are likely to accelerate protein extraction from plant cells in the leaf pulp that the ants add to the fungus garden, but regulatory functions such as activation of proenzymes are also possible, particularly for the aspartic proteases that were present but without showing activity. The proteases had high sequence similarities to proteolytic enzymes of phytopathogenic fungi, consistent with previous indications of convergent evolution of decomposition enzymes in attine ant fungal symbionts and phytopathogenic fungi.  相似文献   

19.
Attine ants cultivate fungi as their most important food source and in turn the fungus is nourished, protected against harmful microorganisms, and dispersed by the ants. This symbiosis evolved approximately 50–60 million years ago in the late Paleocene or early Eocene, and since its origin attine ants have acquired a variety of fungal mutualists in the Leucocoprineae and the distantly related Pterulaceae. The most specialized symbiotic interaction is referred to as “higher agriculture” and includes leafcutter ant agriculture in which the ants cultivate the single species Leucoagaricus gongylophorus. Higher agriculture fungal cultivars are characterized by specialized hyphal tip swellings, so-called gongylidia, which are considered a unique, derived morphological adaptation of higher attine fungi thought to be absent in lower attine fungi. Rare reports of gongylidia-like structures in fungus gardens of lower attines exist, but it was never tested whether these represent rare switches of lower attines to L. gonglyphorus cultivars or whether lower attine cultivars occasionally produce gongylidia. Here we describe the occurrence of gongylidia-like structures in fungus gardens of the asexual lower attine ant Mycocepurus smithii. To test whether M. smithii cultivates leafcutter ant fungi or whether lower attine cultivars produce gongylidia, we identified the M. smithii fungus utilizing molecular and morphological methods. Results shows that the gongylidia-like structures of M. smithii gardens are morphologically similar to gongylidia of higher attine fungus gardens and can only be distinguished by their slightly smaller size. A molecular phylogenetic analysis of the fungal ITS sequence indicates that the gongylidia-bearing M. smithii cultivar belongs to the so-called “Clade 1”of lower Attini cultivars. Given that M. smithii is capable of cultivating a morphologically and genetically diverse array of fungal symbionts, we discuss whether asexuality of the ant host maybe correlated with low partner fidelity and active symbiont choice between fungus and ant mutualists.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号