首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of vanadium compounds (vanadate, vanadyl citrate) on photosynthesis in Chlorella fusca and in algal and spinach chloroplasts has been investigated. It was found that: 1. At moderately high concentrations (at least 0.1 mM) both vanadate and vanadyl citrate enhance photosynthetic O2 production in intact C. fusca cells. At lower V concentration (about 2 μM) only vanadate stimulates photosynthesis. The increase is dependent on culture conditions and on light intensity. 2. Up to 1 mM V, neither vanadium compound influences PS II activity, either in intact cells or in algal or spinach chloroplasts. 3. The PS I reaction in algal and spinach chloroplasts is maximally enhanced (3-fold) in presence of vanadium (20 μM). The increase is independent of light intensity. 4. Cr(VI), Mo(VI), and W(VI) (1 mM) stimulate photosynthesis in intact C. fusca cells, but do not influence the photosystems of isolated chloroplasts. Vanadium is suggested to act as a redox catalyst in the electron transport from PS II to PS I.  相似文献   

2.
Hardt H  Kok B 《Plant physiology》1978,62(1):59-63
Bundle sheath and mesophyll chloroplasts from Zea mays showed comparable rates of O2 evolution, which amounted to about half of the rate observed in spinach (Spinacia oleracea) chloroplasts.

Ratios of 4.5, 4.6, and 6.2 Mn2+ atoms per 400 chlorophylls were observed in mesophyll, bundle sheath, and spinach chloroplasts, respectively. These ratios roughly correspond to the observed O2 evolution rates.

Rates of electron transport from water to methylviologen (photosystem I and II) in both types of corn chloroplasts were about one-third that in spinach. Compared to spinach, transport rates from reduced diaminodurene to methylviologen (photosystem I) were about one-third and greater than one-half in mesophyll and bundle sheath material, respectively.

In both types of corn chloroplasts, electron flow from photosystem II to P700 was abnormal. This observation, together with the low rates of all activities, suggests that damage occurred during isolation. Such damage may limit the quantitative significance of observations made with these materials (including the following data).

Measurements of flash yields of O2 evolution or O2 uptake showed that the size of the photosynthetic unit was the same in photosystems I and II and in all three types of chloroplasts (about 400 chlorophylls per equivalent).

Similarity of the photochemical cross-section of the two photosystems in the three preparations was also found in optical experiments: that is the half-times of the fluorescence rise in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) (photosystem II) and of the photooxidation of P700 (photosystem I).

The ratio of P700 to chlorophyll appeared to be about 2-fold higher in bundle sheath chloroplasts than in the other materials (1/200 versus 1/400).

  相似文献   

3.
The brown alga Macrocystis pyrifera (giant kelp) was studied by a combination of fluorescence spectroscopy at 77 kelvin, room temperature modulated fluorimetry, and photoacoustic techniques to determine how light energy is partitioned between photosystems I and II in states 1 and 2. Preillumination with farred light induced the high fluorescence state (state 1) as determined by fluorescence emission spectra measured at 77K and preillumination with green light produced a low fluorescence state (state 2). Upon transition from state 1 to state 2, there was an almost parallel decrease of all of the fluorescence bands at 693, 705, and 750 nanometers and not the expected decrease of fluorescence of photosystem II and increase of fluorescence in photosystem I. The momentary level of room temperature fluorescence (fluorescence in the steady state, Fs), as well as the fluorescence levels corresponding to all closed (Fm) or all open (Fo) reaction-center states were measured following the kinetics of the transition between states 1 and 2. Calculation of the distribution of light 2 (540 nanometers) between the two photosystems was done assuming both the `separate package' and `spill-over' models. Unlike green plants, red algae, and cyanobacteria, the changes here of the light distribution were rather small in Macrocystis so that there was approximately an even distribution of the photosystem II light at 540 nanometers to photosystem I and photosystem II in both states 1 and 2. Photoacoustic measurements confirmed the conclusions reached as a result of fluorescence measurements, i.e. an almost equal distribution of light-2 quanta to both photosystems in each state. This conclusion was reached by analyzing the enhancement phenomenon by light 2 of the energy storage measured in far red light. The effect of light 1 in decreasing the energy storage measured in light 2 is also consistent with this conclusion. The photoacoustic experiments showed that there was a significant energy storage in light 1 which could be explained by cyclic electron transport around photosystem I. From a quantitative analysis of the enhancement effect of background light 2 (maximum enhancement of 1.4-1.5) it was shown that around 70% of light 1 was distributed to this cyclic photosystem I transport.  相似文献   

4.
A procedure is described for isolating photosynthetically active rhodoplasts (“red algal chloroplasts”) from the marine alga Griffithsia monilis. The rhodoplasts exhibited rates of CO2 fixation and CO2-dependent O2 evolution in the order of 200 micromoles per milligram chlorophyll a per hour when illuminated with red or green light and were approximately 80% intact. The response of the rate of photosynthesis to the inorganic phosphate and pyrophosphate concentrations in the medium was qualitatively similar to that previously reported for spinach chloroplasts. Osmotically shocked rhodoplasts evolved O2 from ferricyanide in red, but not in green, light and were completely uncoupled. Rhodoplast envelope rupture appeared to be accompanied by phycobilisome loss from the thylakoids.  相似文献   

5.
Hardt H  Kok B 《Plant physiology》1977,60(2):225-229
Treatment of spinach chloroplasts with glutaraldehyde causes an inhibition in the electron transport chain between the two photosystems. Measurements of O2 flash yields, pH exchange, and fluorescence induction show that the O2 evolving apparatus, photosystem II and its electron acceptor pool are not affected. The behavior of P700 indicates that its reduction but not its oxidation, is severely inhibited. Cytochrome f is still reducible by photosystem II but also slowly oxidizable by photosystem I. The sensitivity of isolated plastocyanin to glutaraldehyde further supports the conclusion that glutaraldehyde inhibits at the plastocyanin level and thereby induces a break between P700 and cytochrome f.  相似文献   

6.
Chloroplasts were isolated from spinach cultured in calcium-deficient, cerium-chloride-administered calcium-present Hoagland’s media or that of calcium-deficient Hoagland’s media and demonstrated the effects of cerium on distribution of light energy between photosystems II and I and photochemical activities of spinach chloroplast grown in calcium-deficient media. It was observed that calcium deprivation significantly inhibited light absorption, energy transfer from LHCII to photosystemII, excitation energy distribution from PSI to PSII, and transformation from light energy to electron energy and oxygen evolution of chloroplasts. However, cerium treatment to calcium-deficient chloroplasts could obviously improve light absorption and excitation energy distribution from photosystem I to photosystem II and increase activity of whole chain electron transport, photosystems II and I DCPIP photoreduction, and oxygen evolution of chloroplasts. The results suggested that cerium under calcium deficiency condition could substitute for calcium in chloroplasts, maintain the stability of chloroplast membrane, and improve photosynthesis of spinach chloroplast, but the mechanisms still need further study.  相似文献   

7.
The molar ratios of chlorophyll a to b in the thalli of marine green algae were between 1.5 and 2.2, being appreciably lower than the ratio between 2.8 and 3.4 found for the leaves of higher plants and the cells of fresh-water green algae. The ratio of chlorophylls to P-700 in these marine algae was also lower than that in higher plants. The ab ratios in the pigment proteins of Photosystems 1 and 2 separated by polyacrylamide-gel electrophoresis from sodium dodecyl sulfate-solubilized chloroplasts of four species of marine green algae, Bryopsis maxima, Cheatomorpha spiralis, Enteromorpha compress and Ulva conglobata, were approximately 5 and 1, which are considerably smaller than the ratios, 7 and 2, respectively, found for the pigment proteins of the two photosystems of higher plants separated by the same technique. The chloroplasts of Bryopsis maxima and Cheatomorpha spiralis lacked two of the peptides associated with Photosystem II, which are present in the chloroplasts of Spinacia oleracea and Taraxacum officinale.  相似文献   

8.
9.
p-Nitroacetophenoxime N-methylcarbamate (MCPNA) is a rather potent inhibitor of the electron transfer in spinach class A chloroplasts. In isolated thylakoids, MCPNA is an electron acceptor at the level of photosystem I (PS I). It inhibits O2 evolution in the presence of NADP and ferredoxin but not the reduction of ferricyanide. MCPNA is active as an acceptor between 3 μM and 100 μM. At concentrations higher than 300 μM, inhibition of photosystem II (PS II) occurs. MCPNA has no uncoupling effect on photophosphorylation. Reduction of MCPNA by thylakoids in the presence of light is in accordance with the Eo of this compound (??0.57 V) and is followed by an electron transfer to O2. This reaction probably explains the inhibitory effect of MCPNA on class A chloroplasts.  相似文献   

10.
Linka M  Jamai A  Weber AP 《Plant physiology》2008,148(3):1487-1496
In chloroplasts of green plants and algae, CO2 is assimilated into triose-phosphates (TPs); a large part of these TPs is exported to the cytosol by a TP/phosphate translocator (TPT), whereas some is stored in the plastid as starch. Plastidial phosphate translocators have evolved from transport proteins of the host endomembrane system shortly after the origin of chloroplasts by endosymbiosis. The red microalga Galdieria sulphuraria shares three conserved putative orthologous transport proteins with the distantly related seed plants and green algae. However, red algae, in contrast to green plants, store starch in their cytosol, not inside plastids. Hence, due to the lack of a plastidic starch pool, a larger share of recently assimilated CO2 needs to be exported to the cytosol. We thus hypothesized that red algal transporters have distinct substrate specificity in comparison to their green orthologs. This hypothesis was tested by expression of the red algal genes in yeast (Saccharomyces cerevisiae) and assessment of their substrate specificities and kinetic constants. Indeed, two of the three red algal phosphate translocator candidate orthologs have clearly distinct substrate specificities when compared to their green homologs. GsTPT (for G. sulphuraria TPT) displays very narrow substrate specificity and high affinity; in contrast to green plant TPTs, 3-phosphoglyceric acid is poorly transported and thus not able to serve as a TP/3-phosphoglyceric acid redox shuttle in vivo. Apparently, the specific features of red algal primary carbon metabolism promoted the evolution of a highly efficient export system with high affinities for its substrates. The low-affinity TPT of plants maintains TP levels sufficient for starch biosynthesis inside of chloroplasts, whereas the red algal TPT is optimized for efficient export of TP from the chloroplast.  相似文献   

11.
The endosymbiotic origin of chloroplasts from unicellular cyanobacteria is presently beyond doubt. Oxygenic photosynthesis is based on coordinated action of the two photosystems (PS), PS I and PS II, cooperating with several variants of the pigment antenna. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) act as antennae, while in terrestrial plants, as well as in most macro- and microalgae, antennae are formed by chlorophyll a/b- and chlorophyll a/c-containing proteins. Advantages and disadvantages of the PBS antenna compared to other light-harvesting complexes form the basis for adaptive variations of the antenna in the course of development of eukaryotic photosynthesis. During the evolution of the “green” and “chromophyte” lineages of the chloroplasts, PBS, in spite of their optimal features of light absorption, were replaced by chlorophyll a/b- and chlorophyll a/c-containing light-harvesting complexes. Development of the cell wall associated with the limitation of motility and tissue formation in photosynthetic eukaryotes were the factors responsible for the antenna shift. The subsequent redistribution of cell resources in favor of cellulose biosynthesis required for increased CO2 consumption, higher PS II levels, and greater number and density of the thylakoids in the chloroplasts, was incompatible with the energy-consuming and overly large PBS antenna.  相似文献   

12.
The photochemical activities of various species of unicellular algae (Anacystis nidulans, Chlorella pyrenoidosa, and Porphyridium cruentum) were studied following chemical fixation. Fixation with formaldehyde and glutaraldehyde yielded cells which retained their ability to perform photosystem I and photosystem II reactions. The photochemical efficiencies of some fixed algae are as great as those of unfixed spinach chloroplasts. Fixed algae containing accessory pigments appear to be useful models for further studies of the light reactions of photosynthesis.  相似文献   

13.
Two LHC-like proteins, Photosystem II Subunit S (PSBS) and Light-Harvesting Complex Stress-Related (LHCSR), are essential for triggering excess energy dissipation in chloroplasts of vascular plants and green algae, respectively. The mechanism of quenching was studied in Physcomitrella patens, an early divergent streptophyta (including green algae and land plants) in which both proteins are active. PSBS was localized in grana together with photosystem II (PSII), but LHCSR was located mainly in stroma-exposed membranes together with photosystem I (PSI), and its distribution did not change upon high-light treatment. The quenched conformation can be preserved by rapidly freezing the high-light-treated tissues in liquid nitrogen. When using green fluorescent protein as an internal standard, 77K fluorescence emission spectra on isolated chloroplasts allowed for independent assessment of PSI and PSII fluorescence yield. Results showed that both photosystems underwent quenching upon high-light treatment in the wild type in contrast to mutants depleted of LHCSR, which lacked PSI quenching. Due to the contribution of LHCII, P. patens had a PSI antenna size twice as large with respect to higher plants. Thus, LHCII, which is highly abundant in stroma membranes, appears to be the target of quenching by LHCSR.  相似文献   

14.
The activity of NADP and O2 photoreduction by water is essentially higher in chloroplasts isolated from pea seedlings (Pisum sativum L.) grown under blue light as compared with that from plants grown under red light. In contrast, the photoreduction of NADP and O2 with photosystem I only is practically the same or even lower in chloroplasts isolated from plants grown under blue light. The addition of plastocyanin does not affect the rate or the extent of NADP photoreduction by water in the chloroplasts isolated from plants grown under blue light, whereas it sharply activates NADP reduction in the chloroplasts isolated from plants grown under red light. The extent of the light-induced oxidation of cytochrome f is appreciably higher in chloroplasts isolated from plants grown under blue light. Cytochrome b559 plays the predominant role in the oxidoreductive reactions of these chloroplasts. Furthermore, the fluorescence measurements indicate more effective transfer of excitation energy from chlorophyll to the photosystem II reaction center in chloroplasts isolated from plants grown under blue light.  相似文献   

15.
Brown JS 《Plant physiology》1987,83(2):434-437
Chlorophyll-protein complexes were isolated from a yellow-green alga, Nannochloropsis salina after mild detergent treatment and gel electrophoresis. Three different complexes were obtained which correspond to the three major kinds of chlorophyll-proteins isolated from spinach chloroplasts by the same procedure and previously identified as reaction center complexes for photosystems I and II and a light-harvesting complex. The analogy between the algal complexes and those from spinach was drawn from their absorption and fluorescence spectra and relative pigment content. The identities and amounts of the major carotenoids associated with each isolated complex were determined by HPLC. Although the reaction center complexes accounted for only 14% of the total chlorophyll, they were highly enriched in β-carotene, whereas the light-harvesting complex contained a high proportion of xanthophylls (mainly violaxanthin and vaucheriaxanthin-ester). Fluorescence excitation spectra of the algal membranes showed that one or both of the major xanthophylls may act as antenna pigment for photosynthesis.  相似文献   

16.
Isolated spinach chloroplasts have been used as a model system for studying the interaction of ozone, a component of photochemical smog, with plant membranes. Ozone bubbled into a suspension of isolated chloroplasts inhibits electron transport in both photosystems without uncoupling ATP production. Photosystem I (reduced 2,6-dichlorophenolindolphenol → NADP+) is a little more sensitive than photosystem II (H2O → 2,6-dichlophenolindolphenol). Ozone does not act as an energy transfer inhibitor, since the drop in ATP production and high energy intermediate (measured by amine-induced swelling) is nearly parallel to the decline in electron transport. A reasonable hypothesis is that ozone disrupts the normal pathway of energy flow from light-excited chlorophyll into the photoacts by a disruption of the components of the membrane but not a general disintegration of the membrane. In addition, ozone does not seem to penetrate into the grana region through the outer membrane of intact plastids, since ozone lowers the bicarbonate-supported O2 evolution but does not affect the rate of ferricyanide reduction in the same plastids after osmotic disruption. This would indicate that the effect of ozone on green plants, at low concentrations, may be due to the interaction of ozone with the first membrane it contacts and not directly with internal metabolic processes.  相似文献   

17.
Barr R  Crane FL 《Plant physiology》1977,60(3):433-436
The effect of three different stable radicals-2,2-diphenyl-1-picrylhydrazyl, 1,3,5-triphenyl-verdazyl, and galvinoxyl-was studied in photosystem II of spinach (Spinacia oleracea) chloroplasts. Inhibition by the three was noted on dimethylbenzoquinone reduction in presence of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and on silicomolybdate reduction in presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) in photosystem II and on the H2O → methylviologen reaction encompassing both photosystems. Inhibition of all photosystem II reactions except silicomolybdate reduction could be partially restored by α-tocopherol or by 9-ethoxy-α-tocopherone but not by other quinones or radical chasers. On this basis, a functional role for α-tocopherol in the electron transport chain of spinach chloroplasts between the DCMU and DBMIB inhibition sites is postulated.  相似文献   

18.
Patterns of oxygen evolution in flashing light for the blue-green alga Anacystis nidulans are compared with those for broken spinach chloroplasts and whole cells of the green alga Chlorella pyrenoidosa. The oscillations of oxygen yield with flash number that occur in both Anacystis and Chlorella, display a greater degree of damping than do those of isolated spinach chloroplasts. The increase in damping results from a two- to threefold increase in the fraction (α) of reaction centers “missed” by a flash. The increase in α cannot be explained by non-saturating flash intensities or by the dark reduction of the oxidized intermediates formed by the flash. Anaerobic conditions markedly increase α in Anacystis and Chlorella but have no effect on α in broken spinach chloroplasts. The results signify that the mechanism of charge separation and water oxidation involved in all three organisms is the same, but that the pool of secondary electron acceptors between Photosystem II and Photosystem I is more reduced in the dark, in the algal cells, than in the isolated spinach chloroplasts.Oxygen evolution in flashing light for Anacystis and Chlorella show light saturation curves for the oxygen yield of the third flash (Y3) that differ markedly from those of the steady-state flashes (Ys). In experiments in which all flashes are uniformly attenuated, Y3 requires nearly twice as much light as Ys to reach half-saturation. Under these conditions Y3 has a sigmoidal dependence on intensity, while that of Ys is hyperbolic. These differences depend on the number of flashes attenuated. When any one of the first three flashes is attenuated, the variation of Y3 with intensity resembles that of Ys. When two of the first three flashes are attenuated, Y3 is intermediate in shape between the two extremes. A quantitative interpretation of these results based on the model of Kok et al. (Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457–475, and Forbush, B., Kok, B. and McGloin, M. P. (1971) Photochem. Photobiol. 14, 307–321) fits the experimental data.  相似文献   

19.
A comparison of chlorophyll-a fluorescence in brown algae (Macrocystis integrifolia, Fucus vesiculosis), green algae (Scenedesmus obliquus, Ulva sp.) and higher plants (bean, corn) show differences in the relative fluorescence intensities and induction time courses which characterize each type of plant. These differences are not reflected in either the maximum fluorescence emission in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (Fmax) or the nonvariable fluorescence (Fo). Constancy of Fo and Fmax suggests functional similarities of photosystem II and associated antennae pigments in the various classes of plants. The time course differences are observed only in the absence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea and appear, therefore, to be electron transport dependent. During induction, the peak in fluorescence (Fp) is much lower in all of the algae studied than in the higher plants. Exogenous O2 strongly quenches Fp in all plants studied and our data indicate that the low Fp in the algae can be partially accounted for by endogenous O2 quenching.  相似文献   

20.
Multicellular marine plants were collected from their natural habitats and the quantum efficiency of their photosynthesis was determined in the laboratory in five narrow wave length bands in the visible spectrum. The results along with estimates of the relative absorption by the various plastid pigments show a fairly uniform efficiency of 0.08 molecules O2 per absorbed quantum for (a) chlorophyll of one flowering plant, green algae, and brown algae, (b) fucoxanthol and other carotenoids of brown algae, and (c) the phycobilin pigments phycocyanin and phycoerythrin of red algae. The carotenoids of green algae are sometimes less efficient while those of red algae are largely or entirely inactive. Chlorophyll a of red algae is about one-half as efficient (o2 = 0.04) as either the phycobilins, or the chlorophyll of most other plants. These results as well as those of high intensity and of fluorescence experiments are consistent with a mechanism in which about half the chlorophyll is inactive while the other half is fully active and is an intermediate in phycoerythrin- and phycocyanin-sensitized photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号