首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sweet sorghum juice supplemented with 0.5% ammonium sulphate was used as a substrate for ethanol production by Saccharomyces cerevisiae TISTR 5048. In batch fermentation, kinetic parameters for ethanol production depended on initial cell and sugar concentrations. The optimum initial cell and sugar concentrations in the batch fermentation were 1 × 108 cells ml−1 and 24 °Bx respectively. At these conditions, ethanol concentration produced (P), yield (Y ps) and productivity (Q p ) were 100 g l−1, 0.42 g g−1 and 1.67 g l−1 h−1 respectively. In fed-batch fermentation, the optimum substrate feeding strategy for ethanol production at the initial sugar concentration of 24 °Bx was one-time substrate feeding, where P, Y ps and Q p were 120 g l−1, 0.48 g g−1 and 1.11 g l−1 h−1 respectively. These findings suggest that fed-batch fermentation improves the efficiency of ethanol production in terms of ethanol concentration and product yield.  相似文献   

2.
Corynebacterium acetoacidophilum RYU3161 was cultivated in al-histidine-limited fed-batch culture. To investigate the effect of cell growth on thel-proline production, 5l fed-batch culture was performed using an exponential feeding rate to obtain the specific growth rates (μ) of 0.04, 0.06, 0.08, and 0.1 h−1. The results show that the highest production ofl-proline was obtained at μ=0.04 h−1. The specificl-proline production rate (Qp) increased proportionally as a function of the specific growth rate, but decreased after it revealed the maximum value at μ=0.08 h−1. Thus, the highest productivity ofl-proline was 1.66 g L−1 h−1 at μ=0.08 h−1. The results show that the production of L-proline inC. acetoacidophilum RYU3161 has mixed growth-associated characteristics.  相似文献   

3.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

4.
Extracellular human granulocyte-macrophage colony stimulating factor (hGM-CSF) expression was studied under the control of the GAP promoter in recombinant Pichia pastoris in a series of continuous culture runs (dilution rates from 0.025 to 0.2 h−1). The inlet feed concentration was also varied and the steady state biomass concentration increased proportionally demonstrating efficient substrate utilization and constancy of the biomass yield coefficient (Yx/s) for a given dilution rate. The specific product formation rate (qP) showed a strong correlation with dilution rates demonstrating growth associated product formation of hGM-CSF. The volumetric product concentration achieved at the highest feed concentration (4×) and a dilution rate of 0.2 h−1 was 82 mg l−1 which was 5-fold higher compared to the continuous culture run with 1× feed concentration at the lowest dilution rate thus translating to a 40 fold increase in the volumetric productivity. The specific product yield (YP/X) increased slightly from 2 to 2.5 mg g−1, with increasing dilution rates, while it remained fairly invariant, for all feed concentrations demonstrating negligible product degradation or feed back inhibition. The robust nature of this expression system would make it easily amenable to scale up for industrial production.  相似文献   

5.
Dynamic Saccharomyces cerevisiae responses to increasing ethanol stresses were investigated to monitor yeast viability and to optimize bioprocess performance when gradients occurred due to the specific configuration of multi-stage bioreactors with cell recycling or of large volume industrial bioreactors inducing chemical heterogeneities. Twelve fed-batch cultures were carried out with initial ethanol concentrations (P in) ranging from 5 g l−1 to 110 g l−1 with three different inoculums in different physiological states in terms of viability and quantity of ethanol produced (P o). For a given initial cell viability of 50%, the time to reach the maximum growth rate and maximum ethanol production rate was dependent on the difference P in − P o. Whatever the initial physiological state, when the initial ethanol concentration P in reached 100 g l−1, the yeasts died. Experimental results showed that the initial physiological state of the yeast was the major parameter to determine, the microorganisms’ capacities to adapt and resist environmental changes.  相似文献   

6.
Two wild strains of Zymomonas mobilis were isolated (named as ML1 and ML2) from sugar cane molasses obtained from different farms of Santander, Colombia. Initially, selection of the best ethanol-producer strains was carried out using ethanol production parameters obtained with a commercial strain Z. mobilis DSM 3580. Three isolated strains were cultivated in a culture medium containing yeast extract, peptone, glucose and salts, at pH 6 and 32°C with stirring rate of 65 rpm during 62 h. The best results of ethanol production were obtained with the native strain ML1, reaching a maximum ethanol concentration of 79.78 g l−1. ML1 and ML2 strains were identified as Z. mobilis, according to the morphology, biochemical tests and molecular characterization by PCR of specific DNA sequences from Z. mobilis. Subsequently, the effect of different nitrogen sources on production of ethanol was evaluated. The best results were obtained using urea at a 0.73 g/l. In this case, maximum concentration of ethanol was 83.81 g l−1, with kinetic parameters of yield of ethanol on biomass (YP/X) = 69.01(g g−1), maximum volumetric productivity of ethanol (Qpmax) = 2.28 (g l−1 h−1), specific productivity of ethanol (qP) = 3.54 (h−1) and specific growth rate (μ) = 0.12 h−1. Finally, we studied the effect of different culture conditions (pH, temperature, stirring, C/N ratio) with a Placket-Burman′s experimental design. This optimization indicated that the most significant variables were temperature and stirring. In the best culture conditions a significant increase in all variables of response was achieved, reaching a maximum ethanol concentration of 93.55 g l−1.  相似文献   

7.
Quasi steady state growth of Lactococcus lactis IL 1403 was studied in glucose-limited A-stat cultivation experiments with acceleration rates (a) from 0.003 to 0.06 h−2 after initial stabilization of the cultures in chemostat at D = 0.2–0.3 h−1. It was shown that the high limit of quasi steady state growth rate depended on the acceleration rate used—at an acceleration rate 0.003 h−2 the quasi steady state growth was observed until μ crit = 0.59 h−1, which is also the μ max value for the culture. Lower values of μ crit were observed at higher acceleration rates. The steady state growth of bacteria stabilized at dilution rate 0.2 h−1 was immediately disrupted after initiating acceleration at the highest acceleration rate studied—0.06 h−2. Observation was made that differences [Δ(μ − D)] of the specific growth rates from pre-programmed dilution rates were the lowest using an acceleration rate of 0.003 h−2 (< 4% of preset changing growth rate). The adaptability of cells to follow preprogrammed growth rate was found to decrease with increasing dilution rate—it was shown that lower acceleration rates should be applied at higher growth rates to maintain the culture in the quasi steady state. The critical specific growth rate and the biomass yields based on glucose consumption were higher if the medium contained S 0 = 5 g L−1 glucose instead of S 0 = 10 g L−1. It was assumed that this was due to the inhibitory effect of lactate accumulating at higher concentrations in the latter cultures. Parallel A-stat experiments at the same acceleration and dilution rates showed good reproducibility—Δ(μ − D) was less than 5%, standard deviations of biomass yields per ATP produced (Y ATP), and biomass yields per glucose consumed (Y XS) were less than 15%.  相似文献   

8.
The growth performance of malolactic fermenting bacteria Oenococcus oeni NCIMB 11648 and Lactobacillus brevis X2 was assessed in continuous culture. O. oeni grew at a dilution rate range of 0.007 to 0.052 h−1 in a mixture of 5:6 (g l−1) of glucose/fructose at an optimal pH of 4.5, and L. brevis X2 grew at 0.010 to 0.089 h−1 in 10 g l−1 glucose at an optimal pH of 5.5 in a simple and safe medium. The cell dry weight, substrate uptake and product formation were monitored, as well as growth kinetics, yield parameters and fermentation balances were also evaluated under pH control conditions. A comparison of growth characteristics of two strains was made, and this showed significantly different performance. O. oeni has lower maximum specific growth rate (μmax=0.073 h−1), lower maximum cell productivity (Q x max=17.6 mg cell l−1 h−1), lower maximum biomass yield (Y x/s max=7.93 g cell mol−1 sugar) and higher maintenance coefficient (m s=0.45 mmol−1 sugar g−1 cell h−1) as compared with L. brevis X2max=0.110 h−1; Q x max=93.2 g−1 cell mol−1 glucose; Y x/s max=22.3 g cell mol−1 glucose; m s=0.21 mmol−1 glucose g−1 cell h−1). These data suggest a possible more productive strategy for their combined use in maturation of cider and wine.  相似文献   

9.
High-cell-density production of recombinant growth hormone of Lateolabrax japonicus (rljGH) expressed intracellularly in Pichia pastoris was investigated. In the regular strategy of induction at a cell density of 160 g l−1, short duration of intracellular rljGH accumulation (17 h) resulted in a low final cell density of 226 g l−1. Thus, a novel strategy of induction at a cell density of 320 g l−1 was investigated. In this strategy, the preinduction glycerol-feeding scheme had a significant effect on the post-induction production. Constant glycerol feeding led to a decrease of the specific rljGH production and specific production rate because of low preinduction specific growth rate. This decrease was avoided by exponential glycerol feeding to maintain a preinduction specific growth rate of 0.16 h−1. The results from exponential glycerol feeding indicated that the rljGH production depended on the preinduction specific growth rate. Moreover, mixed feeding of methanol and glycerol during induction improved the specific production rate to 0.07 mg g−1 h−1 from 0.043 mg g−1 h−1. Consequently, both high cell density (428 g l−1) and high rljGH production could be achieved by the novel strategy: growing the cells at the specific growth rate of 0.16 h−1 to the cell density of 320 g l−1 and inducing the expression by mixed feeding.  相似文献   

10.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

11.
The bioconversion of high concentration isopropanol (2-propanol, IPA) was investigated by a solvent tolerant strain of bacteria, which was identified as Sphingobacterium mizutae ST2 by partial 16S rDNA gene sequencing. This strain of bacteria exhibited the ability to utilise high concentration isopropanol as the sole carbon source, with mineralization occurring via an acetone intermediate into central metabolism. The biodegradative performance of this strain for IPA was examined over a 2–38 g l−1 concentration range, using specific growth rate (μ) and conversion rate analysis. Maximum specific growth rates (μmax) of 0.0045 h−1 were routinely obtainable on IPA. In addition, the highest specific IPA degradation rate was obtained at a concentration of 7.5 g l−1 with a corresponding value of 0.045 g IPA g cells−1 h−1. While the highest acetone yield reached its maximum value of 0.940 g acetone g IPA−1 at 7.5 g IPA l−1. This is the first report on bioconversion of isopropanol at such high concentration by this solvent tolerant strain of S. mizutae and may allow its application in novel biocatalytic processes for effective biological conversion in two-phase solvent systems.  相似文献   

12.
Summary The growing demand for high quality products and the immense export potential that cacha?a represents, demonstrated especially during the past few years, have clearly indicated the necessity of establishing well-defined standards of quality, as well as effective means of controlling the process of production of this beverage. The objective of this study was the selection of S. cerevisiae yeast strains and the investigation of their influence on the kinetic parameters of fermentation. Ninety strains of S. cerevisiae isolated from distilleries of the state of Minas Gerais were evaluated with respect to the following parameters: flocculation capacity, production of H2S and kinetic parameters of fermentation. The UFMGA 905 strain was used as a reference because it presented desirable characteristics for the production of cacha?a. Five strains presented high specific sedimentation velocities (SSV), indicating a high flocculation capacity, and two did not produce H2S. The strains presented significant statistical differences for fermentation parameters: yield of ethanol; efficiency of substrate conversion to ethanol; ratio of substrate conversion to ethanol (Y p/s), to cells (Y x/s), to organic acids (Y ac/s), and to glycerol (Y g/s); and productivity. In general, the strains presented a good fermentative potential, with ethanol yields varying from 74.7 to 82.1% and an efficiency of 76.1–84.4%. All strains presented high productivities (4.6–6.6 g l−1 h−1), indicating that this parameter can be used in the selection of strains for the production of cacha?a.  相似文献   

13.
Candida cylindracea NRRL Y-17506 was grown to produce extracellular lipase from oleic acid as a carbon source. Through flask cultures, it was found that the optimum initial oleic acid concentration for cell growth was 20 g l−1. However, high initial concentrations of oleic acid up to 50 g l−1 were not inhibitory. The highest extracellular lipase activity obtained in flask culture was 3.0 U ml−1 after 48 h with 5 g l−1 of initial oleic acid concentration. Fed-batch cultures (intermittent and stepwise feeding) were carried out to improve cell concentration and lipase activity. For the intermittent feeding fed-batch culture, the final cell concentration was 52 g l−1 and the extracellular lipase activity was 6.3 U ml−1 at 138.5 h. Stepwise feeding fed-batch cultures were carried out to simulate an exponential feeding and to investigate the effects of specific growth rate (0.02, 0.04 and 0.08 h−1) on cell growth and lipase production. The highest final cell concentration obtained was 90 g l−1 when the set point of specific growth rate (μset) was 0.02 h−1. High specific growth rate (0.04 and 0.08 h−1) decreased extracellular lipase production in the later part of fed-batch cultures due to build-up of the oleic acid oversupplied. The highest extracellular lipase activity was 23.7 U ml−1 when μset was 0.02 h−1, while the highest lipase productivity was 0.31 U ml−1 h−1 at μset of 0.08 h−1.  相似文献   

14.
Conditions have been optimized for fermentation of pretreated hardwood spent sulfite liquor (HSSL) using an adapted strain of Pichia stipitis. The pretreatments, consisting of boiling and overliming with Ca(OH)2 of HSSL, to partially remove inhibitors, and adaptation of the yeast strain to HSSL, were both critical for a successful fermentation. Ethanol concentration was increased from 6.7 to 20.2 g l−1 using adapted P. stipitis (A) and pretreated HSSL. The maximum ethanol yield (Y p/s) and productivity (Q p) were 0.41 g g−1 and 0.44 g l−1 h−1, respectively, at an oxygen transfer rate of 2.0 mmol O2 l−1 h−1. The optimized results with this strain were compared to those of other xylose-fermenting yeasts and Saccharomyces cerevisiae (SSL-acclimatized) currently used at an industrial plant for the fermentation of spent sulfite liquor. Journal of Industrial Microbiology & Biotechnology (2001) 26, 145–150. Received 23 June 2000/ Accepted in revised form 21 October 2000  相似文献   

15.
The effects of initial culture pH ranging from 5.0 to 7.5 on biomass content, precursor 3-hydroxy-2-butanone (HB) accumulation, and 2,3,5,6-tetramethylpyrazine (TTMP) formation by Bacillus subtilis CCTCC M 208157 were investigated in shake flask fermentation. Weak acidic conditions were found to favor cell growth and precursor HB accumulation, while TTMP could be synthesized more efficiently in conditions with initial pH towards neutrality. Batch bioprocess of TTMP fermentation by Bacillus subtilis CCTCC M 208157 at various controlled pH values ranging from 5.5 to 7.0 was then examined in 7.5-l fermentor. The results suggested that optimum pH for cell growth and precursor HB accumulation was 5.5 with maximum cell growth rate (Q x) and precursor HB accumulation rate (Q HB) of 0.833 g l−1 h−1 and 1.118 g l−1 h−1, respectively, while optimum pH for TTMP formation was 7.0 with maximum TTMP formation rate (Q TTMP) of 0.095 g l−1 h−1. A pH-shifted strategy was accordingly developed to improve TTMP production in bioreactor fermentation by shifting the culture pH from 5.5 to 7.0 after 48 h of cultivation. By applying the strategy, final TTMP concentration of 7.43 g l−1 was obtained, being 22.2% greater than that of constant-pH fermentation.  相似文献   

16.
Wei P  Li Z  Lin Y  He P  Jiang N 《Biotechnology letters》2007,29(10):1501-1508
An effective, simple, and convenient method to improve yeast’s multiple-stress tolerance, and ethanol production was developed. After an ethanologenic Saccharomyces cerevisiae strain SC521 was treated by nine cycles of freeze-thaw, a mutant FT9-11 strain with higher multiple-stress tolerance was isolated, whose viabilities under acetic acid, ethanol, freeze-thaw, H2O2, and heat-shock stresses were, respectively, 23-, 26-, 10- and 7-fold more than the parent strain at an initial value 2 × 107 c.f.u. per ml. Ethanol production of FT9-11 was similar (91.5 g ethanol l−1) to SC521 at 30°C with 200 g glucose l−1, and was better than the parent strain at 37°C (72.5 g ethanol l−1), with 300 (111 g ethanol l−1) or with 400 (85 g ethanol l−1) g glucose l−1.  相似文献   

17.
Hypoxia caused by eutrophication occurs over large areas in aquatic systems worldwide. Common carp (Cyprinus carpio) exposed to hypoxia (1 mg · O2 · l−1 and 2 mg · O2 · l−1) for 1 week showed a significant reduction in feeding rate, respiration rate, faecal production and nitrogenous excretion compared to those maintained at normoxia (7 mg · O2 · l−1). Fish exposed to hypoxia showed negative scope for growth (SfG), but no significant difference in the specific growth rate was revealed after 1 week in both hypoxic groups. A significant reduction in RNA/DNA ratio was, however, clearly evident in the white muscle of the 1 mg · O2 · l−1 treatment group, but not in the 2 mg · O2 · l−1 treatment group. Both specific growth rate and RNA/DNA ratio were significantly reduced when fish were exposed to severe hypoxia (0.5 mg · O2 · l−1) for 4 weeks. At all levels of hypoxia, growth reduction was accompanied by a significant decrease in RNA/DNA ratio in white muscle. Covariance analysis showed no significant difference between the slope of RNA/DNA ratio and growth rate under normoxic conditions and 0.5 mg · O2 · l−1 for 4 weeks (F=1.036, P > 0.326), as well as 1.0 mg · O2 · l−1 and 2.0 mg · O2 · l−1 for 1 week (F = 0.457, P > 0.5), indicating that the RNA/DNA ratio serves as a biomarker of growth under all oxygen levels, at least under controlled experimental conditions. SfG also appears to be more sensitive than the RNA/DNA ratio in responding to hypoxia in fish. Accepted: 15 September 2000  相似文献   

18.
The influence of toluene concentration on the specific growth rate, cellular yield, specific CO2, and metabolite production by Pseudomonas putida F1 (PpF1) was investigated. Both cellular yield and specific CO2 production remained constant at 1.0 ± 0.1 g biomass dry weight (DW) g−1 toluene and 1.91 ± 0.31 g CO2 g−1 biomass, respectively, under the tested range of concentrations (2–250 mg toluene l−1). The specific growth rate increased up to 70 mg toluene l−1. Further increases in toluene concentration inhibited PpF1 growth, although inhibitory concentrations were far from the application range of biological treatment processes. The specific ATP content increased with toluene concentration up to toluene concentrations of 170 mg l−1. 3-Methyl catechol (3-MC) was never detected in the cultivation medium despite being an intermediary in the TOD pathway. This suggested that the transformation from toluene to 3-MC was the limiting step in the biodegradation process. On the other hand, benzyl alcohol (BA) was produced from toluene in a side chain reaction. This is, to the best of our knowledge, the first reported case of methyl monoxygenation of toluene by PpF1 not harboring the pWW0 TOL plasmid. In addition, the influence of 3-MC, BA, and o-cresol on toluene degradation was investigated respirometrically, showing that toluene-associated respiration was not significantly inhibited in the presence of 10–100 mg l−1 of the above-mentioned compounds.  相似文献   

19.
Batch fermentations for xylitol production were conducted using Candida boidinii (BCRC 21432), C. guilliermondii (BCRC 21549), C. tropicalis (BCRC 20520), C. utilis (BCRC 20334), and P. anomala (BCRC 21359) together with a mixture of sugars simulating lignocellulosic hydrolysates as the carbon source. C. tropicalis had the highest bioconversion yield (YP/S) of 0.79 g g−1 (g xylitol·g xylose−1) over 48 h. Additional fermentations with C. tropicalis achieved YP/S values of 0.6 and 0.39 g g−1 after 96 and 72 h using urea and soybean meal as the nitrogen sources, respectively. Ethanol and arabitol were also produced in all fermentation. Xylitol in the fermentation broth was recovered by cross-flow ultrafiltration. With prior application of 2 mg polydiallyl dimethylammonium chloride l−1 on the membrane surface, protein in the permeate was reduced from 7.1 to 1.5 mg l−1 after 2 h.  相似文献   

20.
By complementing a non-fermentative Escherichia coli (ldhA pflB ) strain with the recombinant Zymomonas mobilis ethanol pathway (pdc, adhB), we evaluated the effect of different levels of enzymatic activity on growth rate demonstrating that there is a direct relationship between anaerobic growth rate and the total specific activity of pyruvate decarboxylase, which is the limiting enzyme of this specific fermentative NAD+ regenerating pathway. This relationship was proved to be useful to establish a selection strategy based on growth rate for the analysis of lctE libraries, which encode lactate dehydrogenase from Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号