首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingomonas paucimobilis SYK-6 converts vanillate and syringate to protocatechuate and 3-O-methylgallate (3MGA), respectively. 3MGA is metabolized via multiple pathways involving 3MGA 3,4-dioxygenase, protocatechuate 4,5-dioxygenase (LigAB), and gallate dioxygenase whereas protocatechuate is degraded via the protocatechuate 4,5-cleavage pathway. Here the secondary role of LigAB in syringate metabolism is investigated. The reaction product of 3MGA catalyzed by His-tagged LigAB was identified as 4-carboxy-2-hydroxy-6-methoxy-6-oxohexa-2,4-dienoate (CHMOD) and 2-pyrone-4,6-dicarboxylate (PDC), indicating that 3MGA is transformed to CHMOD and PDC by both reactions catalyzed by DesZ and LigAB. Mutant analysis revealed that the 3MGA catabolic pathways involving LigAB are functional in SYK-6.  相似文献   

2.
Vanillate and syringate are converted into protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by O-demethylases in Sphingomonas paucimobilis SYK-6. PCA is further degraded via the PCA 4,5-cleavage pathway, while 3MGA is degraded through multiple pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and an unidentified 3MGA O-demethylase and gallate dioxygenase are participants. For this study, we isolated a 4.7-kb SmaI fragment that conferred on Escherichia coli the activity required for the conversion of vanillate to PCA. The nucleotide sequence of this fragment revealed an open reading frame of 1,413 bp (ligM), the deduced amino acid sequence of which showed 49% identity with that of the tetrahydrofolate (H4folate)-dependent syringate O-demethylase gene (desA). The metF and ligH genes, which are thought to be involved in H4folate-mediated C1 metabolism, were located just downstream of ligM. The crude LigM enzyme expressed in E. coli converted vanillate and 3MGA to PCA and gallate, respectively, with similar specific activities, and only in the presence of H4folate; however, syringate was not a substrate for LigM. The disruption of ligM led to significant growth retardation on both vanillate and syringate, indicating that ligM is involved in the catabolism of these substrates. The ability of the ligM mutant to transform vanillate was markedly decreased, and this mutant completely lost the 3MGA O-demethylase activity. A ligM desA double mutant completely lost the ability to transform vanillate, thus indicating that desA also contributes to vanillate degradation. All of these results indicate that ligM encodes vanillate/3MGA O-demethylase and plays an important role in the O demethylation of vanillate and 3MGA, respectively.  相似文献   

3.
Sphingomonas paucimobilis SYK-6 is able to grow on various lignin-derived biaryls as the sole source of carbon and energy. These compounds are degraded to vanillate and syringate by the unique and specific enzymes in this strain. Vanillate and syringate are converted to protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by the tetrahydrofolate-dependent O-demethylases. Previous studies have suggested that these compounds are further degraded via the PCA 4,5-cleavage pathway. However, our subsequent analysis of the ligB insertion mutant, which encodes the beta subunit of PCA 4,5-dioxygenase, suggested that at least one alternative route is involved in 3MGA degradation. In the present study, we isolated the desZ gene, which confers 3MGA degradation activity on Escherichia coli. The deduced amino acid sequence of desZ showed ca. 20 to 43% identity with the type II extradiol dioxygenases. Gas chromatography-mass spectrometry analysis suggested that DesZ catalyzes the 3,4-cleavage of 3MGA. Disruption of both desZ and ligB in SYK-6 resulted in loss of the dioxygen-dependent 3MGA transformation activity, but the resulting mutant retained the ability to grow on syringate. We found that the cell extract of the desZ ligB double mutant was able to convert 3MGA to gallate when tetrahydrofolate was added to the reaction mixture, and the cell extract of this mutant degraded gallate to the same degree as the wild type did. All these results suggest that syringate is degraded through multiple 3MGA degradation pathways in which ligAB, desZ, 3MGA O-demethylase, and gallate dioxygenase are participants.  相似文献   

4.
Sphingomonas paucimobilis SYK-6 degrades syringate to 3-O-methylgallate (3MGA), which is finally converted to pyruvate and oxaloacetate via multiple pathways in which protocatechuate 4,5-dioxygenase, 3MGA dioxygenase, and gallate dioxygenase are involved. Here we isolated the syringate O-demethylase gene (desA), which complemented the growth deficiency on syringate of a Tn5 mutant of the SYK-6 derivative strain. The desA gene is located 929 bp downstream of ferA, encoding feruloyl-coenzyme A synthetase, and consists of a 1,386-bp open reading frame encoding a polypeptide with a molecular mass of 50,721 Da. The deduced amino acid sequence of desA showed 26% identity in a 325-amino-acid overlap with that of gcvT of Escherichia coli, which encodes the tetrahydrofolate (H(4)folate)-dependent aminomethyltransferase involved in glycine cleavage. The cell extract of E. coli carrying desA converted syringate to 3MGA only when H(4)folate was added to the reaction mixture. DesA catalyzes the transfer of the methyl moiety of syringate to H(4)folate, forming 5-methyl-H(4)folate. Vanillate and 3MGA were also used as substrates for DesA; however, the relative activities toward them were 3 and 0.4% of that toward syringate, respectively. Disruption of desA in SYK-6 resulted in a growth defect on syringate but did not affect growth on vanillate, indicating that desA is essential to syringate degradation. In a previous study the ligH gene, which complements the growth deficiency on vanillate and syringate of a chemical-induced mutant of SYK-6, DC-49, was isolated (S. Nishikawa, T. Sonoki, T. Kasahara, T. Obi, S. Kubota, S. Kawai, N. Morohoshi, and Y. Katayama, Appl. Environ. Microbiol. 64:836-842, 1998). Disruption of ligH resulted in the same phenotype as DC-49; its cell extract, however, was found to be able to convert vanillate and syringate in the presence of H(4)folate. The possible role of ligH is discussed.  相似文献   

5.
Sphingomonas paucimobilis SYK-6 is able to grow on various dimeric lignin compounds, which are converted to vanillate and syringate by the actions of unique lignin degradation enzymes in this strain. Vanillate and syringate are degraded by the O-demethylase and converted into protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively. PCA is further degraded via the PCA 4,5-cleavage pathway, while the results suggested that 3MGA is degraded through another pathway in which PCA 4,5-dioxygenase is not involved. In a 10.5-kb EcoRI fragment carrying the genes for PCA 4,5-dioxygenase (ligAB), 2-pyrone-4,6-dicarboxylate hydrolase (ligI), and a portion of 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (ligC), we found the ligJ gene encoding 4-oxalomesaconate (OMA) hydratase, which catalyzes the conversion of OMA into 4-carboxy-4-hydroxy-2-oxoadipate. The ligJ gene is transcribed in the same direction as ligABC genes and consists of an 1,023-bp open reading frame encoding a polypeptide with a molecular mass of 38,008 Da, which is located 73-bp upstream from ligA. The ligJ gene product (LigJ), expressed in Escherichia coli, was purified to near homogeneity and was estimated to be a homodimer (69.5 kDa) by gel filtration chromatography. The isoelectric point was determined to be 4.9, and the optimal temperature is 30 degrees C. The K(m) for OMA and the V(max) were determined to be 138 microM and 440 U/mg, respectively. LigJ activity was inhibited by the addition of thiol reagents, suggesting that some cysteine residue is part of the catalytic site. The ligJ gene disruption in SYK-6 caused the growth defect on and the accumulation of common metabolites from both vanillate and syringate, indicating that the ligJ gene is essential to the degradation of these two compounds. These results indicated that syringate is converted into OMA via 3MGA, and it enters the PCA 4,5-cleavage pathway.  相似文献   

6.
Sphingomonas paucimobilis SYK-6 is able to grow on a wide variety of dimeric lignin compounds. These compounds are degraded via vanillate and syringate by a unique enzymatic system, composed of etherases, O demethylases, ring cleavage oxygenases and side chain cleaving enzymes. These unique and specific lignin modification enzymes are thought to be powerful tools for utilization of the most abundant aromatic biomass, lignin. Here, we focus on the genes and enzymes involved in β-aryl ether cleavage and biphenyl degradation. Two unique etherases are involved in the reductive cleavage of β-aryl ether. These two etherases have amino acid sequence similarity with the glutathione S-transferases, and use glutathione as a hydrogen donor. It was found that 5,5′-dehydrodivanillate, which is a typical lignin-related biphenyl structure, was transformed into 5-carboxyvanillate by the reaction sequence of O-demethylation, meta-ring cleavage, and hydrolysis, and the genes involved in the latter two reactions have been characterized. Vanillate and syringate are the most common intermediate metabolites in lignin catabolism. These compounds are initially O-demethylated and the resulting diol compounds, protocatechuate (PCA) and 3-O-methylgallate, respectively, are subjected to ring cleavage catalyzed by PCA 4,5-dioxygenase. The ring cleavage products generated are further degraded through the PCA 4,5-cleavage pathway. We have isolated and characterized genes for enzymes involved in this pathway. Disruption of a gene for 2-pyrone-4,6-dicarboxylate hydrolase (ligI) in this pathway suggested that an alternative route for 3-O-methylgallate degradation, in which ligI is not involved, would play a role in syringate catabolism. In this article, we describe the genetic and biochemical features of the S. paucimobilis SYK-6 genes involved in degradation of lignin-related compounds. A possible application of the SYK-6 lignin degradation system to produce a valuable chemical material is also described. Received 01 May 1999/ Accepted in revised form 29 July 1999  相似文献   

7.
8.
BACKGROUND: Sphingomonas paucimobilis SYK-6 utilizes an extradiol-type catecholic dioxygenase, the LigAB enzyme (a protocatechuate 4,5-dioxygenase), to oxidize protocatechuate (or 3,4-dihydroxybenzoic acid, PCA). The enzyme belongs to the family of class III extradiol-type catecholic dioxygenases catalyzing the ring-opening reaction of protocatechuate and related compounds. The primary structure of LigAB suggests that the enzyme has no evolutionary relationship with the family of class II extradiol-type catecholic dioxygenases. Both the class II and class III enzymes utilize a non-heme ferrous center for adding dioxygen to the substrate. By elucidating the structure of LigAB, we aimed to provide a structural basis for discussing the function of class III enzymes. RESULTS: The crystal structure of substrate-free LigAB was solved at 2.2 A resolution. The molecule is an alpha2beta2 tetramer. The active site contains a non-heme iron coordinated by His12, His61, Glu242, and a water molecule located in a deep cleft of the beta subunit, which is covered by the alpha subunit. Because of the apparent oxidation of the Fe ion into the nonphysiological Fe(III) state, we could also solve the structure of LigAB complexed with a substrate, PCA. The iron coordination sphere in this complex is a distorted tetragonal bipyramid with one ligand missing, which is presumed to be the O2-binding site. CONCLUSIONS: The structure of LigAB is completely different from those of the class II extradiol-type dioxygenases exemplified by the BphC enzyme, a 2,3-dihydroxybiphenyl 1,2-dioxygenase from a Pseudomonas species. Thus, as already implicated by the primary structures, no evolutionary relationship exists between the class II and III enzymes. However, the two classes of enzymes share many geometrical characteristics with respect to the nature of the iron coordination sphere and the position of a putative catalytic base, strongly suggesting a common catalytic mechanism.  相似文献   

9.
In this work we have characterized the galA gene product from Pseudomonas putida KT2440, a ring-cleavage dioxygenase that acts specifically on gallate to produce 4-oxalomesaconate. The protein is a trimer composed by three identical subunits of 47.6 kDa (419 amino acids) that uses Fe2+ as the main cofactor. The gallate dioxygenase showed maximum activity at pH 7.0, and the Km and Vmax values for gallate were 144 microM and 53.2 micromol/min/mg of protein, respectively. A phylogenetic study suggests that the gallate dioxygenase from P. putida KT2440 is the prototype of a new subgroup of type II extradiol dioxygenases that share a common ancestor with protocatechuate 4,5-dioxygenases and whose two-domain architecture might have evolved from the fusion of the large and small subunits of the latter. A three-dimensional model for the N-terminal domain (residues 1-281) and C-terminal domain (residues 294-420) of the gallate dioxygenase from P. putida KT2440 was generated by comparison with the crystal structures of the large (LigB) and small (LigA) subunits of the protocatechuate 4,5-dioxygenase from Sphingomonas paucimobilis SYK-6. The expression of the galA gene was specifically induced when P. putida KT2440 cells grew in the presence of gallate. A P. putida KT2440 galA mutant strain was unable to use gallate as the sole carbon source and it did not show gallate dioxygenase activity, suggesting that the GalA protein is the only dioxygenase involved in gallate cleavage in this bacterium. This work points to the existence of a new pathway that is devoted to the catabolism of gallic acid and that remained unknown in the paradigmatic P. putida KT2440 strain.  相似文献   

10.
Lignins are the most abundant aromatic compounds in nature, and their decomposition is essential to the terrestrial carbon cycle. White rot fungi secreting phenol oxidases are assumed to be involved in the initial degradation of native lignin, whereas bacteria play a main role in the mineralization of lignin-derived low-molecular-weight compounds in soil. There are a number of reports on the degradation pathways for lignin-derived aromatic compounds, but their catabolism has not been enzymatically or genetically characterized. Sphingomonas paucimobilis SYK-6 is one of the best-characterized lignin-degrading bacteria. It can grow on a wide variety of lignin-related biaryls and monoaryls, including beta-aryl ether, biphenyl, diarylpropane, and phenylpropane. These compounds are degraded via the protocatechuate (PCA) 4,5-cleavage pathway or multiple 3-O-methylgallate (3MGA) catabolic pathways. In this review, the enzyme systems for beta-aryl ether and biphenyl degradation, O demethylation linked with one carbon metabolism, the PCA 4,5-cleavage pathway, and the multiple 3MGA catabolic pathways in SYK-6 are outlined.  相似文献   

11.
12.
Valorization of lignin, an abundant component of plant cell walls, is critical to enabling the lignocellulosic bioeconomy. Biological funneling using microbial biocatalysts has emerged as an attractive approach to convert complex mixtures of lignin depolymerization products to value-added compounds. Ideally, biocatalysts would convert aromatic compounds derived from the three canonical types of lignin: syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H). Pseudomonas putida KT2440 (hereafter KT2440) has been developed as a biocatalyst owing in part to its native catabolic capabilities but is not known to catabolize S-type lignin-derived compounds. Here, we demonstrate that syringate, a common S-type lignin-derived compound, is utilized by KT2440 only in the presence of another energy source or when vanAB was overexpressed, as syringate was found to be O-demethylated to gallate by VanAB, a two-component monooxygenase, and further catabolized via extradiol cleavage. Unexpectedly, the specificity (kcat/KM) of VanAB for syringate was within 25% that for vanillate and O-demethylation of both substrates was well-coupled to O2 consumption. However, the native KT2440 gallate-cleaving dioxygenase, GalA, was potently inactivated by 3-O-methylgallate. To engineer a biocatalyst to simultaneously convert S-, G-, and H-type monomers, we therefore employed VanAB from Pseudomonas sp. HR199, which has lower activity for 3MGA, and LigAB, an extradiol dioxygenase able to cleave protocatechuate and 3-O-methylgallate. This strain converted 93% of a mixture of lignin monomers to 2-pyrone-4,6-dicarboxylate, a promising bio-based chemical. Overall, this study elucidates a native pathway in KT2440 for catabolizing S-type lignin-derived compounds and demonstrates the potential of this robust chassis for lignin valorization.  相似文献   

13.
Protocatechuate (PCA) is the key intermediate metabolite in the lignin degradation pathway of Sphingomonas paucimobilis SYK-6 and is metabolized to pyruvate and oxaloacetate via the PCA 4,5-cleavage pathway. We characterized the 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase gene (ligC). CHMS is the 4,5-cleavage product of PCA and is converted into 2-pyrone-4,6-dicarboxylate (PDC) by LigC. We found that ligC was located 295 bp downstream of ligB, which encodes the large subunit of the PCA 4,5-dioxygenase. The ligC gene consists of a 945-bp open reading frame encoding a polypeptide with a molecular mass of 34,590 Da. The deduced amino acid sequence of ligC showed 19 to 20% identity with 3-chlorobenzoate cis-dihydrodiol dehydrogenase of Alcaligenes sp. strain BR60 and phthalate cis-dihydrodiol dehydrogenases of Pseudomonas putida NMH102-2 and Burkholderia cepacia DBO1, which are unrelated to group I, II, and III microbial alcohol dehydrogenases (M. F. Reid and C. A. Fewson, Crit. Rev. Microbiol. 20:13-56, 1994). The ligC gene was expressed in Escherichia coli and LigC was purified to near homogeneity. Production of PDC from CHMS catalyzed by LigC was confirmed in the presence of NADP(+) by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. LigC is a homodimer. The isoelectric point, optimum pH, and optimum temperature were estimated to be 5.3, 8.0, and 25 degrees C, respectively. The K(m) for NADP(+) was estimated to be 24.6 +/- 1.5 microM, which was approximately 10 times lower than that for NAD(+) (252 +/- 3.9 microM). The K(m)s for CHMS in the presence of NADP(+) and NAD(+) are 26.0 +/- 0.5 and 20.6 +/- 1.0 microM, respectively. Disruption of ligC in S. paucimobilis SYK-6 prevented growth with vanillate. Only PCA was accumulated during the incubation of vanillate with the whole cells of the ligC insertion mutant (DLC), indicating a lack of PCA 4,5-dioxygenase activity in DLC. However, the introduction of ligC into DLC restored its ability to grow on vanillate. PDC was suggested to be an inducer for ligAB gene expression.  相似文献   

14.
Sphingomonas paucimobilis SYK-6 can grow on several dimeric model compounds of lignin as a carbon and energy source. It has O demethylation systems on three kinds of substrates: 5, 5'-dehydrodivanillic acid (DDVA), syringate, and vanillate. We previously reported the cloning of a gene involved in the tetrahydrofolate-dependent O demethylation of syringate and vanillate. In the study reported here, we cloned the gene responsible for DDVA O demethylation. Using nitrosoguanidine mutagenesis, a mutant strain, NT-1, which could not degrade DDVA but could degrade syringate and vanillate, was isolated and was used to clone the gene responsible for the O demethylation of DDVA by complementation. Sequencing analysis showed an open reading frame (designated ligX) of 1,266 bp in this fragment. The deduced amino acid sequence of LigX had similarity to class I type oxygenases. LigX was involved in O demethylation activity on DDVA but not on vanillate and syringate. DDVA O demethylation activity in S. paucimobilis SYK-6 cell extracts was inhibited by addition of the LigX polyclonal antiserum. Thus, LigX is an essential enzyme for DDVA O demethylation in SYK-6. S. paucimobilis SYK-6 has two O demethylation systems: one is an oxygenative demethylase system, and the other is a tetrahydrofolate-dependent methyltransferase system.  相似文献   

15.
The enzyme 2′-aminobiphenyl-2,3-diol-1,2-dioxygenase (CarB), encoded by two genes (carBa and carBb), is an α2β2 heterotetramer that presents meta-cleavage activity toward the hydroxylated aromatic ring in the carbazole degradation pathway from petroleum-degrader bacteria Pseudomonas spp. The 1082-base, pair polymerase chain reaction product corresponding to, carBaBb genes from Pseudomonas stutzeri ATCC 31258 was cloned by site-specific recombination and expressed in high levels in Escherichia coli BL21-SI with a histidine-tag and in native form. The CarB activity toward 2,3-dihydroxybiphenyl was similar for these two constructions. The α2β2 3D model of CarB dioxygenase was proposed by homology modeling using the protocatechuate 4,5-dioxygenase (LigAB) structure as template. Accordingly, His12, His53, and Glu230 coordinate the Fe(II) in the catalytic site at the subunit CarBb. The model also indicates that His182 is the catalytic base responsible for deprotonating one of the hydroxyl group of the substrate by a hydrogen bond. The hydrophobic residues Trp257 and Phe258 in the CarB structure substituted the LigAB amino acid residues Ser269 and Asn270. These data could explain why the CarB was active for 2,3-dihydroxybiphenyl and not for protocatechuate.  相似文献   

16.
Sphingomonas paucimobilis SYK-6 transforms 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA), a lignin-related biphenyl compound, to 5-carboxyvanillic acid via 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA) as an intermediate (15). The ring fission of OH-DDVA is an essential step in the DDVA degradative pathway. A 15-kb EcoRI fragment isolated from the cosmid library complemented the growth deficiency of a mutant on OH-DDVA. Subcloning and deletion analysis showed that a 1.4-kb DNA fragment included the gene responsible for the ring fission of OH-DDVA. An open reading frame encoding 334 amino acids was identified and designated ligZ. The deduced amino acid sequence of LigZ had 18 to 21% identity with the class III extradiol dioxygenase family, including the β subunit (LigB) of protocatechuate 4,5-dioxygenase of SYK-6 (Y. Noda, S. Nishikawa, K.-I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki, J. Bacteriol. 172:2704–2709, 1990), catechol 2,3-dioxygenase I (MpcI) of Alcaligenes eutrophus JMP222 (M. Kabisch and P. Fortnagel, Nucleic Acids Res. 18:3405–3406, 1990), the catalytic subunit of the meta-cleavage enzyme (CarBb) for 2′-aminobiphenyl-2,3-diol from Pseudomonas sp. strain CA10 (S. I. Sato, N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori, J. Bacteriol. 179:4841–4849, 1997), and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) of Escherichia coli (E. L. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, and T. D. H. Bugg, J. Bacteriol. 178:5249–5256, 1996). The ring fission product formed from OH-DDVA by LigZ developed a yellow color with an absorption maximum at 455 nm, suggesting meta cleavage. Thus, LigZ was concluded to be a ring cleavage extradiol dioxygenase. LigZ activity was detected only for OH-DDVA and 2,2′,3,3′-tetrahydroxy-5,5′-dicarboxybiphenyl and was dependent on the ferrous ion.Lignin is the most common aromatic compound in the biosphere, and the degradation of lignin is a significant step in the global carbon cycle. Lignin is composed of various intermolecular linkages between phenylpropanes and guaiacyl, syringyl, p-hydroxyphenyl, and biphenyl nuclei (5, 34). Lignin breakdown therefore involves multiple biochemical reactions involving the cleavage of intermonomeric linkages, demethylations, hydroxylations, side-chain modifications, and aromatic ring fission (10, 11, 19, 40).Soil bacteria are known to display ample metabolic versatility toward aromatic substrates. Sphingomonas paucimobilis SYK-6 (formerly Pseudomonas paucimobilis SYK-6) has been isolated with 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA) as a sole carbon and energy source. This strain can also grow on syringate, 3-O-methylgallic acid (3OMGA), vanillate, and other dimeric lignin compounds, including β-aryl ether, diarylpropane (β-1), and phenylcoumaran (15). Analysis of the metabolic pathway has indicated that the dimeric lignin compounds are degraded to protocatechuate or 3OMGA (15) and that these compounds are cleaved by protocatechuate 4,5-dioxygenase encoded by ligAB (30). Among the dimeric lignin compounds, the degradation of β-aryl ether and the biphenyl structure is the most important, because β-aryl ether is most abundant in lignin (50%) and the biphenyl structure is so stable that its decomposition should be rate limiting in lignin degradation. We have already characterized the β-etherase and Cα-dehydrogenase genes (2326) (ligFE and ligD, respectively) involved in the degradation of β-aryl ether. In this study, we focused on the genes responsible for the degradation of DDVA in SYK-6.In the proposed DDVA metabolic pathway of S. paucimobilis SYK-6 illustrated in Fig. Fig.1A,1A, DDVA is first demethylated to produce the diol compound 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA). OH-DDVA is then degraded to 5-carboxyvanillic acid (5-CVA), and this compound is converted to 3OMGA (15). The resulting product is cleaved by protocatechuate 4,5-dioxygenase. A ring cleavage enzyme for OH-DDVA has been thought to be involved in this pathway because the production of 5-CVA from OH-DDVA resembles the formation of benzoic acid from biphenyl by 2,3-dihydroxybiphenyl through the sequential action of a meta cleavage enzyme and a meta-cleavage compound hydrolase (Fig. (Fig.1B)1B) (1, 9, 13, 18, 21, 28). Open in a separate windowFIG. 1(A) Proposed metabolic pathway for DDVA by S. paucimobilis SYK-6. (B) Pathway for the conversion of 2,3-dihydroxybiphenyl (2,3-DHBP) to benzoate by the polychlorinated biphenyl-degrading bacteria. The proposed DDVA metabolic pathway follows the previous one (15). Enzymes: LigZ, OH-DDVA oxygenase; LigAB, protocatechuate 4,5-dioxygenase; BphC, 2,3-dihydroxybiphenyl 1,2-dioxygenase; BphD, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase. TCA, tricarboxylic acid.In this study, we isolated the ligZ gene encoding a ring cleavage enzyme for OH-DDVA. The nucleotide sequence of the gene was determined, and the ligZ gene product was characterized.  相似文献   

17.
Stenotrophomonas maltophilia KB2 is known to produce different enzymes of dioxygenase family. The aim of our studies was to determine activity of these enzymes after induction by benzoic acids in cometabolic systems with nitrophenols. We have shown that under cometabolic conditions KB2 strain degraded 0.25–0.4 mM of nitrophenols after 14 days of incubation. Simultaneously degradation of 3 mM of growth substrate during 1–3 days was observed depending on substrate as well as cometabolite used. From cometabolic systems with nitrophenols as cometabolites and 3,4-dihydroxybenzoate as a growth substrate, dioxygenases with the highest activity of protocatechuate 3,4-dioxygenase were isolated. Activity of catechol 1,2- dioxygenase and protocatechuate 4,5-dioxygenase was not observed. Catechol 2,3-dioxygenase was active only in cultures with 4-nitrophenol. Ability of KB2 strain to induce and synthesize various dioxygenases depending on substrate present in medium makes this strain useful in bioremediation of sites contaminated with different aromatic compounds.  相似文献   

18.
19.
Sphingomonas (Pseudomonas) paucimobilis SYK-6 is able to grow on 5,5′-dehydrodivanillic acid (DDVA), syringate, vanillate, and other dimeric model compounds of lignin as a sole carbon source. Nitrosoguanidine mutagenesis of S. paucimobilis SYK-6 was performed, and two mutants with altered DDVA degradation pathways were isolated. The mutant strain NT-1 could not degrade DDVA, but could degrade syringate, vanillate, and 2,2′,3′-trihydroxy-3-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA). Strain DC-49 could slowly assimilate DDVA, but could degrade neither vanillate nor syringate, although it could degrade protocatechuate and 3-O-methylgallate. A complementing DNA fragment of strain DC-49 was isolated from the cosmid library of strain SYK-6. The minimum DNA fragment complementing DC-49 was determined to be the 1.8-kbp insert of pKEX2.0. Sequencing analysis showed an open reading frame of 1,671 bp in this fragment, and a similarity search indicated that the deduced amino acid sequence of this open reading frame had significant similarity (60%) to the formyltetrahydrofolate synthetase of Clostridium thermoaceticum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号