首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rabbit antiserum specific for Tetrahymena calmodulin was prepared and characterized: In Ouchterlony's immunodiffusion test, the antiserum gave rise to a single precipitin line only with calmodulin in the reaction with crude Tetrahymena extract and the antiserum cross-reacted with a calmodulin fraction from Paramecium, but not with several calmodulin fractions, from higher organisms. Calmodulins from the ciliates appear to share some antigenic determinants which are absent in calmodulins from higher organisms. The intracellular localization of calmodulin was investigated by indirect immunofluorescent method using anti-Tetrahymena calmodulin antibody purified on an antigen-Sepharose affinity column. Immunofluorescence was localized in the oral apparatus, cilia, basal bodies, the anterior end of the cell, and the contractile vacuole pores. The localization suggested involvement of calmodulin in food vacuole formation (nutrient uptake), excretion of contractile vacuole contents (regulation of osmotic pressure), and in ciliary movement (reversal). The suggestion was supported by the observation that trifluoperazine markedly suppressed food vacuole formation and excretion of contractile vacuole contents and affected the ciliary motion.  相似文献   

2.
3.
4.
5.
6.
7.
Mouse fibroblast interphase nuclei stained with quinacrine dihydrochloride show distinctive differences in their fluorescent characteristics analogous to those which we have already observed in human and Syrian hamster cells. These patterns reflect the position of any given nucleus within the cell cycle. The brightly fluorescent chromocenters in the mouse nuclei were found to be in absolute aggreement with those stained by the C-banding technique, indicating that they represent centromeric heterochromatin. Furthermore, their number and size per nucleus were shown to vary in relation to the progress of the cell cycle.  相似文献   

8.
9.
Tetrahymena calcium-binding protein is indeed a calmodulin   总被引:1,自引:0,他引:1  
We previously isolated a Ca2+-binding protein from a ciliate, Tetrahymena, and designated it as TCBP (Tetrahymena Ca2+-binding protein). The present paper reports that TCBP, which has two high affinity Ca2+-binding sites (Kd=4.6 X 10(-6) M), could activate porcine brain cyclic nucleotide phosphodiesterase at a concentration of over 10(-6) M free Ca2+, with the same mode of activation as that of authentic (porcine brain) calmodulin. In addition, the amino acid composition of TCBP was essentially the same as that of brain calmodulin. Therefore, we conclude that TCBP as an activator of Tetrahymena guanylate cyclase is indeed a calmodulin.  相似文献   

10.
Cell cycle dependent growth factor regulation of gene expression   总被引:2,自引:0,他引:2  
The expression of the proto-oncogenes c-fos and c-myc is a rapid response of G0-arrested fibroblasts to serum and peptide growth factors; however, the role of the c-fos and c-myc gene products in subsequent cell cycle transit is not understood. We examined the expression of c-fos and c-myc mRNA in Balb/c 3T3 murine fibroblasts in response to platelet-derived growth factor (PDGF) and platelet-poor plasma, using arrest points associated with density dependent growth inhibition or metabolic inhibition to synchronize cells in S phase of the cell cycle. The expression of c-fos and c-myc mRNA in Balb/c 3T3 cells was differentially regulated with respect to growth factor dependence and cell cycle dependence. c-fos expression was induced in the presence of PDGF and was unaffected by plasma. The induction of c-fos expression in response to PDGF was cell cycle independent, occurring in cells transiting S phase and G2 as well as in G0 arrest. In contrast, c-myc expression was both growth factor and cell cycle dependent. In G0 arrested cells, c-myc expression was PDGF-dependent and plasma-independent, and PDGF was required for maintenance of elevated c-myc levels during G1 transit. In cells transiting S phase, c-myc mRNA was induced in response to PDGF, but was also plasma-dependent in S phase cells that had been "primed" by exposure to PDGF during S phase.  相似文献   

11.
Temperature dependent RNA decay in Tetrahymena   总被引:1,自引:0,他引:1  
  相似文献   

12.
Fluorescent in situ hybridization with chromosome specific probes was used in conjunction with laser scanning confocal microscopy to assess the three-dimensional distribution of chromosomes in human T-lymphocyte nuclei. Cells in the G1-phase of the cell cycle exhibit a distinctly non-random chromosome organization: centromeric regions of the ten chromosomes examined are localized on the nuclear periphery, often making contact with the nuclear membrane, while telomeric domains are consistently localized within the interior 50% of the nuclear volume. Chromosome homolog pairing is not observed. Transition from the G1 to G2 cell cycle phase is accompanied by extensive chromosome movement, with centromeres assuming a more interior location. Chromosome condensation and chromatin depleted areas are observed in a small subset of G2 nuclei approaching mitosis. These results demonstrate that dynamic chromosome rearrangements occur in non-mitotic nuclei during the cell cycle.by L. Manuelidis  相似文献   

13.
We report here that a precipitating antibody prepared against Tetrahymena pyriformis calmodulin recognizes calcium-dependent determinants in the native protein. The ability of the antibody to precipitate 35S-labeled Tetrahymena calmodulin in direct radioimmunoassays was enhanced at least 3-fold in the presence of calcium. Competitive radioimmunoassay using homogeneous preparation of endogenously 35S-labeled Tetrahymena calmodulin and protein A-Sepharose-purified immunoglobulin G demonstrated that this antibody preparation is specific for protozoan calmodulin. Homogeneous vertebrate, invertebrate, and plant calmodulins, as well as rabbit skeletal muscle troponin C, did not show significant competition with the 35S-labeled Tetrahymena protein at concentrations 100-fold greater than that at which the homologous unlabeled Tetrahymena calmodulin produced 50% competition. A cyanogen bromide digest of Tetrahymena calmodulin also showed partial competition with the intact 35S-labeled protein, but only in the presence of calcium. The major antigenic determinants were localized to the carboxyl-terminal half of the molecule by immunoassay of limited trypsin fragments of Tetrahymena calmodulin. The antibody bound native calmodulin complexed to bovine brain phosphodiesterase (EC 3.1.4.17) but failed to recognize the Tetrahymena calmodulin carboxyl-terminal fragment (76-147) when complexed to the enzyme.  相似文献   

14.
The total cellular acid RNase activity per milliliter of culture increases sharply following each heat shock in the cell cycle of Tetrahymena pyriformis ST synchronized with heat shocks spaced one generation time apart. Thus, the RNase activity per 10(5) cells is 24.5 units immediately after the end of the sixth heat shock, increases to 39.0 units during the following 55 minutes and decreases to 24.2 units at the start of the seventh heat shock. No change in the RNase activity occurs during the heat shock period. In logarithmically growing cells the RNase activity per 10(5) cells is 15.4 units. The heart shock stimulates the increase in the RNase activity, since no rapid increase occurs during the free running division cycle but a rapid increase occurs after an additional heat shock given at different times during the cell cycle. Inhibition of the increase in RNase activity by cycloheximide suggests that concurrent protein synthesis is required for the stimulation of the RNase activity by the heat shock treatment.  相似文献   

15.
Guanylate cyclase activity decreased during the division phase of heat-shock synchronized Tetrahymena pyriformis, strain GL. However, when Ca2+ was removed by EGTA to negate the effects of the Ca2+-binding protein (calmodulin), which is required for the full activity of guanylate cyclase in this organism, no significant change in the enzymatic activity was observed throughout the cell cycle. On the other hand, the reduced guanylate cyclase activity at division phase was associated with a decreased level of calmodulin content. These results suggest that fluctuations in guanylate cyclase activity during the cell cycle would be dependent on the concentration of calmodulin.  相似文献   

16.
The subcellular distribution of calmodulin and particulate calmodulin-binding activity was studied in a eukaryotic protozoan, Tetrahymena pyriformis NT-1. The particulate calmodulin-binding activity was found to be localized principally in microsomes and to some extent in cilia and surface membranes called pellicles. Nearly all (93%) of the total amount of calmodulin was recovered in two soluble compartments, the ciliary and postmicrosomal supernatant fractions.  相似文献   

17.
18.
In the course of an attempt to isolate the calmodulin-binding proteins (CaMBPs) from cilia of Tetrahymena, it was found that some CaMBPs tend to interact with axonemal microtubules. The present study demonstrates this interaction by cosedimentation experiments using in vitro polymerized Tetrahymena axonemal microtubules and Tetrahymena CaMBPs purified from axonemes by calmodulin affinity column chromatography. Analysis by the [125I]calmodulin overlay method showed that at least three CaMBPs (Mr69, 45, and 37 kDa) cosediment with microtubules. Furthermore, without any addition of exogenous CaMBPs, microtubules purified after three cycles of temperature-dependent polymerization and depolymerization included the above CaMBPs and additional CaMBPs (Mr30, 26, and 22 kDa) which could not cosediment with microtubules. From the results, we have classified these microtubule-associated CaMBPs into two groups: (i) CaMBPs which interact with microtubules only during polymerization (30, 26, and 22 kDa), and (ii) CaMBPs which interact not only with microtubules during polymerization, but also with polymerized microtubules (69, 45, and 37 kDa). These results suggest that the microtubule-associated CaMBPs, especially those of the latter group, are located on the surface of ciliary microtubules, and may become the target molecules of calmodulin at Ca2+-triggered ciliary reversal.  相似文献   

19.
Enzymes of the Polo-like kinase (Plk) family are active in the pathways controlling mitosis in several species. We have cloned cDNA fragments of the porcine homologues of Plk1, Plk2, and Plk3 employing fetal fibroblasts as source. All three partial cDNAs showed high sequence homology with their mouse and human counterparts and contained the Polo box, a domain characteristic for all Polo kinases. The expression levels of Plk1 mRNA at various points of the cell cycle in synchronized porcine fetal fibroblasts were analyzed by both RT-PCR and the ribonuclease protection assay. Plk1 mRNA was barely detectable in G0 and G1, increased during S phase and peaked after the G2/M transition. A monoclonal antibody was generated against an in vitro expressed porcine Plk1-protein fragment and used to detect changes in Plk1 expression at the protein level. Plk1 protein was first detected by immunoblotting at the beginning of S phase and was highest after the G2/M transition. In summary, the Plk1 expression pattern in the pig is similar to that reported for other species. The absence of Plk1 mRNA and protein appears to be a good marker for G0/G1 and thus for the selection of donor cells for nuclear transfer based somatic cloning.  相似文献   

20.
Summary A cell surface associated “glucose regulated protein” has been described on nontransformed human fibroblasts. To examine the distribution of that protein on human fibroblasts specific antisera were used. The antisera was used in conjunction with indirect immunofluorescence and revealed that the glucose regulated protein was present as fibers on spread cells. Further, the antisera was used in complement mediated cytotoxicity assays to examine cells during specific stages of the mitotic cell cycle. Fibroblasts were synchronized by serum starvation, hydroxyurea inhibition, or colcemid inhibition followed by mitotic selection. The results demonstrated that the glucose regulated protein was maximally displayed during the G1 phase of the cell cycle and minimally displayed during the S and M phases. Research was supported by contract AG00697 from the National Institutes of Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号