共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Human lung surfactant protein D (hSP-D) belongs to the collectin family of C-type lectins and participates in the innate immune surveillance against microorganisms in the lung through recognition of carbohydrate ligands present on the surface of pathogens. The involvement of this protein in innate immunity and the allergic response make it the subject of much interest. RESULTS: We have determined the crystal structure of a trimeric fragment of hSP-D at 2.3 A resolution. The structure comprises an alpha-helical coiled-coil and three carbohydrate-recognition domains (CRDs). An interesting deviation from symmetry was found in the projection of a single tyrosine sidechain into the centre of the coiled-coil; the asymmetry of this residue influences the orientation of one of the adjacent CRDs. The cleft between the three CRDs presents a large positively charged surface. CONCLUSIONS: The fold of the CRD of hSP-D is similar to that of the mannan-binding protein (MBP), but its orientation relative to the alpha-helical coiled-coil region differs somewhat to that seen in the MBP structure. The novel central packing of the tyrosine sidechain within the coiled-coil and the resulting asymmetric orientation of the CRDs has unexpected functional implications. The positively charged surface might facilitate binding to negatively charged structures, such as lipopolysaccharides. 相似文献
2.
Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains 总被引:1,自引:3,他引:1
Joseph Jaffe Shira Natanson-Yaron Michael G. Caparon & Emanuel Hanski 《Molecular microbiology》1996,21(2):373-384
Binding of the group A streptococcus (GAS) to respiratory epithelium is mediated by the fibronectin (Fn)-binding adhesin, protein F1. Previous studies have suggested that certain GAS strains express Fn-binding proteins that are different from protein F1. In this study, we have cloned, sequenced, and characterized a gene ( prtF2 ) from GAS strain 100076 encoding a novel Fn-binding protein, termed protein F2. Insertional inactivation of prtF2 in strain 100076 abolishes its high-affinity Fn binding. prtF2 -related genes exist in most GAS strains that lack prtF1 (encoding protein F1) but bind Fn with high affinity. These observations suggest that protein F2 is a major Fn-binding protein in GAS. Protein F2 is highly homologous to Fn-binding proteins from Streptococcus dysgalactiae and Strep-tococcus equisimilis , particularly in its carboxy-terminal portion. Two domains are responsible for Fn binding by protein F2. One domain (FBRD) consists of three consecutive repeats, whereas the other domain (UFBD) resides on a non-repeated stretch of approximately 100 amino acids and is located 100 amino acids amino-terminal of FBRD. Each of these domains is capable of binding Fn when expressed as a separate protein. In strain 100076, protein F2 activity is regulated in response to alterations in the concentration of atmospheric oxygen. 相似文献
3.
Kudo H Senju S Mitsuya H Nishimura Y 《Biochemical and biophysical research communications》2000,272(2):456-465
We earlier identified the GTPBP1 gene which encodes a putative GTPase structurally related to peptidyl elongation factors. This finding was the result of a search for genes, the expression of which is induced by interferon-gamma in a macrophage cell line, THP-1. In the current study, we probed the expressed sequence tag database with the deduced amino acid sequence of GTPBP1 to search for partial cDNA clones homologous to GTPBP1. We used one of the partial cDNA clones to screen a mouse brain cDNA library and identified a novel gene, mouse GTPBP2, encoding a protein consisting of 582 amino acids and carrying GTP-binding motifs. The deduced amino acid sequence of mouse GTPBP2 revealed 44.2% similarity to mouse GTPBP1. We also cloned a human homologue of this gene from a cDNA library of the human T cell line, Jurkat. GTPBP2 protein was found highly conserved between human and mouse (over 99% identical), thereby suggesting a fundamental role of this molecule across species. On Northern blot analysis of various mouse tissues, GTPBP2 mRNA was detected in brain, thymus, kidney and skeletal muscle, but was scarce in liver. Level of expression of GTPBP2 mRNA was enhanced by interferon-gamma in THP-1 cells, HeLa cells, and thioglycollate-elicited mouse peritoneal macrophages. In addition, we determined the chromosomal localization of GTPBP1 and GTPBP2 genes in human and mouse. The GTPBP1 gene was mapped to mouse chromosome 15, region E3, and human chromosome 22q12-13.1, while the GTPBP2 gene is located in mouse chromosome 17, region C-D, and human chromosome 6p21-12. 相似文献
4.
The multiple RNA-binding domains of the mRNA poly(A)-binding protein have different RNA-binding activities. 总被引:33,自引:8,他引:33
下载免费PDF全文

The poly(A)-binding protein (PABP) is the major mRNA-binding protein in eukaryotes, and it is essential for viability of the yeast Saccharomyces cerevisiae. The amino acid sequence of the protein indicates that it consists of four ribonucleoprotein consensus sequence-containing RNA-binding domains (RBDs I, II, III, and IV) and a proline-rich auxiliary domain at the carboxyl terminus. We produced different parts of the S. cerevisiae PABP and studied their binding to poly(A) and other ribohomopolymers in vitro. We found that none of the individual RBDs of the protein bind poly(A) specifically or efficiently. Contiguous two-domain combinations were required for efficient RNA binding, and each pairwise combination (I/II, II/III, and III/IV) had a distinct RNA-binding activity. Specific poly(A)-binding activity was found only in the two amino-terminal RBDs (I/II) which, interestingly, are dispensable for viability of yeast cells, whereas the activity that is sufficient to rescue lethality of a PABP-deleted strain is in the carboxyl-terminal RBDs (III/IV). We conclude that the PABP is a multifunctional RNA-binding protein that has at least two distinct and separable activities: RBDs I/II, which most likely function in binding the PABP to mRNA through the poly(A) tail, and RBDs III/IV, which may function through binding either to a different part of the same mRNA molecule or to other RNA(s). 相似文献
5.
The human RD protein is closely related to nuclear RNA-binding proteins and has been highly conserved 总被引:6,自引:0,他引:6
Carol S. Surowy George Hoganson John Gosink Kathleen Strunk Richard A. Spritz 《Gene》1990,90(2):299-302
We have isolated cDNA clones encoding the human RD protein, which is closely related to several known nuclear RNA-binding proteins. The RD protein contains a 60-amino acid (aa) tract almost entirely of alternating basic and acidic aa, (RD)n, primarily arginine (Arg; R) and aspartic acid (Asp; D). The protein also contains an ‘RNP sequence domain’. Arg-rich tracts and the RNP sequence domain are both features of nuclear RNA-binding proteins. However, we have been unable to detect RNA-binding by the human RD protein. The very strong evolutionary conservation of the mammalian RD protein as sequence suggests that it plays an important role in the cell. 相似文献
6.
Tominaga M Kurihara H Honda S Amakawa G Sakai T Tomooka Y 《Journal of neurochemistry》2006,96(1):292-304
Here we have identified and characterized a novel mitochondrial Ca2+-binding protein, mitocalcin. Western blot analysis demonstrated that mitocalcin was widely expressed in mouse tissues. The expression in brain was increased during post-natal to adult development. Further analyses were carried out in newly established neural cell lines. The protein was expressed specifically in neurons but not in glial cells. Double-labeling studies revealed that mitocalcin was colocalized with mitochondria in neurons differentiated from 2Y-3t cells. In addition, mitocalcin was enriched in the mitochondrial fraction purified from the cells. Immunohistochemical studies on mouse cerebellum revealed that the expression pattern of mitocalcin in glomeruli of the internal granular and molecular layers was well overlapped by the distribution pattern of mitochondria. Immunogold electron microscopy showed that mitocalcin was associated with mitochondrial inner membrane. Overexpression of mitocalcin in 2Y-3t cells resulted in neurite extension. Inhibition of the expression in 2Y-3t cells caused suppression of neurite outgrowth and then cell death. These findings suggest that mitocalcin may play roles in neuronal differentiation and function through the control of mitochondrial function. 相似文献
7.
Sadano H Sugimoto H Sakai F Nomura N Osumi T 《Biochemical and biophysical research communications》2000,267(1):418-422
Nuclear matrix is a complex intranuclear network supposed to be involved in the various nuclear functions. In order to identify the nuclear matrix proteins, we isolated a cDNA clone from a human placenta cDNA library. This clone was partially represented a known cDNA clone HA1237. HA1237 encoded a 631-amino-acid peptide, which we designated NXP-1. NXP-1 was related to yeast Rad21/Scc1/Mcd1, Xenopus XRAD21, and mouse PW29, and identical with HR21spA isolated from a human testis cDNA library. We developed a polyclonal antibody to the purified NXP-1 bacterially expressed as a fusion protein with GST. Western blot analysis with anti-NXP-1 polyclonal antibody showed nuclear matrix localization of NXP-1 in HeLa cells. Indirect immunofluorescence staining also showed nuclear and nuclear matrix localization of the NXP-1. Results of in vitro binding assays employing nuclear matrix preparations indicated that the N-terminal region (16-128 amino acid) of NXP-1 has an important role in nuclear matrix distribution. 相似文献
8.
Conserved regions in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2
下载免费PDF全文

Epstein-Barr virus (EBV) EBNA-LP is a latent protein whose function is not fully understood. Recent studies have shown that EBNA-LP may be an important EBNA2 cofactor by enhancing EBNA2 stimulation of the latency C and LMP-1 promoters. To further our understanding of EBNA-LP function, we have introduced a series of mutations into evolutionarily conserved regions and tested the mutant proteins for the ability to enhance EBNA2 stimulation of the latency C and LMP-1 promoters. Three conserved regions (CR1 to CR3) are located in the repeat domains that are essential for the EBNA2 cooperativity function. In addition, three serine residues are also well conserved in the repeat domains. Clustered alanine mutations were introduced into CR1 to CR3, and the conserved serines were also changed to alanine residues in an EBNA-LP with two repeats, which is the minimal protein able to cooperate with EBNA2. Mutations introduced into CR1a had no effect on EBNA-LP function, while mutations introduced into CR1b resulted in EBNA-LP with slightly decreased activity. Mutations in CR1c and CR2 resulted in proteins that no longer localized exclusively to the nucleus and also had no EBNA2 cooperation activity. Mutations introduced into conserved serines S5/71 resulted in proteins with slightly higher activity, while mutations introduced into conserved serines S35/101 or in CR3 (which contains S60/126) resulted in EBNA-LP proteins with substantially reduced activity. The potential karyophilic signals within EBNA-LP CR1c and CR2 were also examined by introducing oligonucleotides encoding these positively charged amino acid groupings into a cytoplasmic test protein, herpes simplex virus DeltaIE175, and by examining the intracellular localization of the resulting proteins. This assay identified a strong nuclear localization signal between EBNA-LP amino acids 43 and 50 (109 to 117 in the second W repeat) comprising CR2, while EBNA-LP amino acids 29 to 36 (91 to 98 in the second W repeat) were unable to function independently as a nuclear localization signal. However, a combination of amino acids 29 to 50 resulted in more efficient nuclear localization than with amino acids 43 to 50 alone. These results indicate that EBNA-LP has a bipartite nuclear localization signal and that efficient nuclear localization is essential for EBNA2 cooperativity function. Interestingly, EBNA-LP with only a single repeat localized exclusively to the cytoplasm, providing an explanation for why this isoform has no activity. In addition, two conserved serine residues which are distinct from nuclear import functions are important for EBNA2 cooperativity function. 相似文献
9.
Solution structures of the first and second RNA-binding domains of human U2 small nuclear ribonucleoprotein particle auxiliary factor (U2AF(65)).
下载免费PDF全文

The large subunit of the human U2 small nuclear ribonucleoprotein particle auxiliary factor (hU2AF(65)) is an essential RNA-splicing factor required for the recognition of the polypyrimidine tract immediately upstream of the 3' splice site. In the present study, we determined the solution structures of two hU2AF(65) fragments, corresponding to the first and second RNA-binding domains (RBD1 and RBD2, respectively), by nuclear magnetic resonance spectroscopy. The tertiary structure of RBD2 is similar to that of typical RNA-binding domains with the beta1-alpha1-beta2-beta3-alpha2-beta4 topology. In contrast, the hU2AF(65) RBD1 structure has unique features: (i) the alpha1 helix is elongated by one turn toward the C-terminus; (ii) the loop between alpha1 and beta2 (the alpha1/beta2 loop) is much longer and has a defined conformation; (iii) the beta2 strand is (188)AVQIN(192), which was not predicted by sequence alignments; and (iv) the beta2/beta3 loop is much shorter. Chemical shift perturbation experiments showed that the U2AF-binding RNA fragments interact with the four beta-strands of RBD2 whereas, in contrast, they interact with beta1, beta3 and beta4, but not with beta2 or the alpha1/beta2 loop, of RBD1. The characteristic alpha1-beta2 structure of the hU2AF(65) RBD1 may interact with other proteins, such as UAP56. 相似文献
10.
11.
12.
13.
The amino acid sequences of most of the CH1, CH2 and CH3 domains of IgG Zie, a myeloma protein belonging to the IgG2 subclass, are presented. These data make possible a comparison of the sequences of residues 253-446 of all four subclasses of immunoglobulins: these residues make up almost the entire Fc regions. A comparison can also be made of the CH1 domain of IgG1 Eu and the CH1 domain of IgG2 Zie. Earlier sequence analyses of the Fc regions of subclass 1 and 3 proteins, and parts of the Fc regions of subclass 2 and 4 proteins showed that about 95% of these sequences were identical. The extended comparisons made possible by the data presented here show that this very high degree of identity is maintained throughout the four subclasses. Similarly, the CH1 domains of gamma 1 and gamma 2 chains were found to have about 93% sequence identity. It is unlikely that the few single amino acid changes within the constant region domains can account for the marked differences between subclasses observed in the region domains can account for the marked differences between subclasses observed in the biological effector functions of immunoglobulin Fc regions, especially since most of the changes are highly conservative. Rather, it seems probable that these functional differences are caused by conformational differences between the subgroups, which result from sequence differences in the hinge regions. 相似文献
14.
Sengupta S Jang BC Wu MT Paik JH Furneaux H Hla T 《The Journal of biological chemistry》2003,278(27):25227-25233
15.
R C Patel D J Vestal Z Xu S Bandyopadhyay W Guo S M Erme B R Williams G C Sen 《The Journal of biological chemistry》1999,274(29):20432-20437
The interferon-induced double-stranded RNA-activated protein kinase PKR is the prototype of a class of double-stranded (dsRNA)-binding proteins (DRBPs) which share a dsRNA-binding motif conserved from Drosophila to humans. Here we report the purification of DRBP76, a new human member of this class of proteins. Sequence from the amino terminus of DRBP76 matched that of the M phase-specific protein, MPP4. DRBP76 was also cloned by the yeast two-hybrid screening of a cDNA library using a mutant PKR as bait. Analysis of the cDNA sequence revealed that it is the full-length version of MPP4, has a bipartite nuclear localization signal, two motifs that can mediate interactions with both dsRNA and PKR, five epitopes for potential M phase-specific phosphorylation, two potential sites for phosphorylation by cyclin-dependent kinases, a RG2 motif present in many RNA-binding proteins and predicts a protein of 76 kDa. DsRNA and PKR interactions of DRBP76 were confirmed by analysis of in vitro translated and purified native proteins. Cellular expression of an epitope-tagged DRBP76 demonstrated its nuclear localization, and its co-immunoprecipitation with PKR demonstrated that the two proteins interact in vivo. Finally, purified DRBP76 was shown to be a substrate of PKR in vitro, indicating that this protein's cellular activities may be regulated by PKR-mediated phosphorylation. 相似文献
16.
The heterogeneous nuclear ribonucleoprotein (hn- RNP) C proteins, among the most abundant pre-mRNA-binding proteins in the eukaryotic nucleus, have a single RNP motif RNA-binding domain. The RNA-binding domain (RBD) is comprised of approximately 80-100 amino acids, and its structure has been determined. However, relatively little is known about the role of specific amino acids of the RBD in the binding to RNA. We have devised a phage display-based screening method for the rapid identification of amino acids in hnRNP C1 that are essential for its binding to RNA. The identified mutants were further tested for binding to poly(U)-Sepharose, a substrate to which wild type hnRNP C1 binds with high affinity. We found both previously predicted, highly conserved residues as well as additional residues in the RBD to be essential for C1 RNA binding. We also identified three mutations in the leucine-rich C1-C1 interaction domain near the carboxyl terminus of the protein that both abolished C1 oligomerization and reduced RNA binding. These results demonstrate that although the RBD is the primary determinant of C1 RNA binding, residues in the C1-C1 interaction domain also influence the RNA binding activity of the protein. The experimental approach we described should be generally applicable for the screening and identification of amino acids that play a role in the binding of proteins to nucleic acid substrates. 相似文献
17.
Zucconi BE Ballin JD Brewer BY Ross CR Huang J Toth EA Wilson GM 《The Journal of biological chemistry》2010,285(50):39127-39139
AU-rich element RNA-binding protein 1 (AUF1) binding to AU-rich elements (AREs) in the 3'-untranslated regions of mRNAs encoding many cytokines and other regulatory proteins modulates mRNA stability, thereby influencing protein expression. AUF1-mRNA association is a dynamic paradigm directed by various cellular signals, but many features of its function remain poorly described. There are four isoforms of AUF1 that result from alternative splicing of exons 2 and 7 from a common pre-mRNA. Preliminary evidence suggests that the different isoforms have varied functional characteristics, but no detailed quantitative analysis of the properties of each isoform has been reported despite their differential expression and regulation. Using purified recombinant forms of each AUF1 protein variant, we used chemical cross-linking and gel filtration chromatography to show that each exists as a dimer in solution. We then defined the association mechanisms of each AUF1 isoform for ARE-containing RNA substrates and quantified relevant binding affinities using electrophoretic mobility shift and fluorescence anisotropy assays. Although all AUF1 isoforms generated oligomeric complexes on ARE substrates by sequential dimer association, sequences encoded by exon 2 inhibited RNA-binding affinity. By contrast, the exon 7-encoded domain enhanced RNA-dependent protein oligomerization, even permitting cooperative RNA-binding activity in some contexts. Finally, fluorescence resonance energy transfer-based assays showed that the different AUF1 isoforms remodel bound RNA substrates into divergent structures as a function of protein:RNA stoichiometry. Together, these data describe isoform-specific characteristics among AUF1 ribonucleoprotein complexes, which likely constitute a mechanistic basis for differential functions and regulation among members of this protein family. 相似文献
18.
Protein modification by the ubiquitin-like SUMO protein contributes to many cellular regulatory mechanisms. In Saccharomyces cerevisiae, both sumoylating and desumoylating activities are essential for viability. Of its two known desumoylating enzymes, Ubl-specific protease (Ulp)1 and Ulp2/Smt4, Ulp1 is specifically required for cell cycle progression. A approximately 200-residue segment, the Ulp domain (UD), is conserved among Ulps and includes a core cysteine protease domain that is even more widespread. Here we demonstrate that the Ulp1 UD by itself can support wild-type growth rates and in vitro can cleave SUMO from substrates. However, in cells expressing only the UD of Ulp1, many SUMO conjugates accumulate to high levels, indicating that the nonessential Ulp1 NH2-terminal domain is important for activity against a substantial fraction of sumoylated targets. The NH2-terminal domain also includes sequences necessary and sufficient to concentrate Ulp1 at nuclear envelope sites. Remarkably, NH2-terminally deleted Ulp1 variants are able, unlike full-length Ulp1, to suppress defects of cells lacking the divergent Ulp2 isopeptidase. Thus, the NH2-terminal regulatory domain of Ulp1 restricts Ulp1 activity toward certain sumoylated proteins while enabling the cleavage of others. These data define key functional elements of Ulp1 and strongly suggest that subcellular localization is a physiologically significant constraint on SUMO isopeptidase specificity. 相似文献
19.
Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order to understand the role of the CC domain in NB-LRR function, we have undertaken a systematic structure-function analysis of the CC domain of the potato (Solanum tuberosum) CC-NB-LRR protein Rx, which confers resistance to Potato virus X. We show that the highly conserved EDVID motif of the CC domain mediates an intramolecular interaction that is dependent on several domains within the rest of the Rx protein, including the NB and LRR domains. Other conserved and nonconserved regions of the CC domain mediate the interaction with the Ran GTPase-activating protein, RanGAP2, a protein required for Rx function. Furthermore, we show that the Rx NB domain is sufficient for inducing cell death typical of hypersensitive plant resistance responses. We describe a model of CC-NB-LRR function wherein the LRR and CC domains coregulate the signaling activity of the NB domain in a recognition-specific manner. 相似文献
20.
Structure-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein 总被引:1,自引:0,他引:1
The Arabidopsis (Arabidopsis thaliana) RESISTANCE TO PSEUDOMONAS SYRINGAE5 (RPS5) disease resistance protein mediates recognition of the Pseudomonas syringae effector protein AvrPphB. RPS5 belongs to the coiled-coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) family and is activated by AvrPphB-mediated cleavage of the protein kinase PBS1. Here, we present a structure-function analysis of the CC and LRR domains of RPS5 using transient expression assays in Nicotiana benthamiana. We found that substituting the CC domain of RPS2 for the RPS5 CC domain did not alter RPS5 specificity and only moderately reduced its ability to activate programmed cell death, suggesting that the CC domain does not play a direct role in the recognition of PBS1 cleavage. Analysis of an RPS5-super Yellow Fluorescent Protein fusion revealed that RPS5 localizes to the plasma membrane (PM). Alanine substitutions of predicted myristoylation (glycine-2) and palmitoylation (cysteine-4) residues affected RPS5 PM localization, protein stability, and function in an additive manner, indicating that PM localization is essential to RPS5 function. The first 20 amino acids of RPS5 were sufficient for directing super Yellow Fluorescent Protein to the PM. C-terminal truncations of RPS5 revealed that the first four LRR repeats are sufficient for inhibiting RPS5 autoactivation; however, the complete LRR domain was required for the recognition of PBS1 cleavage. Substitution of the RPS2 LRR domain resulted in the autoactivation of RPS5, indicating that the LRR domain must coevolve with the NBS domain. We conclude that the RPS5 LRR domain functions to suppress RPS5 activation in the absence of PBS1 cleavage and promotes RPS5 activation in its presence. 相似文献