首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), does not induce heat-labile SV40 T antigen but does induce a previously uncharacterized heat-stable SV40 antigen-the SV40 "U" antigen. This antigen is detectable by both immunofluorescence and complement fixation by using sera from hamsters with SV40 tumors. Sera from hamsters bearing SV40 tumors can be divided into two groups, those that react with both SV40 T and U antigens (T(+)U(+) sera) and those that react with SV40 T antigen only (T(+)U(-) sera). SV40 U-specific sera from monkeys immunized with Ad2(+)ND(1)-infected cells do not react with SV40 T antigen by immunofluorescence but do react with an antigen in the nucleus of SV40-transformed cells and with an early, cytosine arabinoside-resistant antigen present in the nucleus of SV40-infected cells. A heat-stable SV40 antigen detectable by complement fixation with T(+)U(+) hamster sera is present in extracts of SV40-induced hamster tumors and in cell packs of SV40-infected or -transformed cells. SV40 U-antigen synthesis by Ad2(+)ND(1) virus is partially sensitive to inhibitors of deoxyribonucleic acid synthesis, whereas U-antigen synthesis by SV40 virus is an early cytosine arabinoside-resistant event. As an early SV40 antigen differing from SV40 T antigen, U antigen may play a role in malignant transformation mediated by SV40.  相似文献   

2.
3.
The complement-fixing tumor (T) antigen induced by simian virus 40 (SV40) has been prepared from SV40-infected cell cultures, from infected cell cultures treated at the time of infection with 1-beta-d-arabinofuranosylcytosine (ara-C), and from SV40-transformed cells. Upon partial purification, the T antigen exhibited the following properties: it was tightly adsorbed by calcium phosphate gel, it was precipitated by acetic acid at pH 5 or by ammonium sulfate at about 20 to 32% saturation, and it had a molecular weight greater than 250,000, as estimated by Sephadex G-200 gel chromatography. In contrast, deoxycytidylate (dCMP) deaminase, thymidylate (dTMP) kinase, and thymidine (dT) kinase were less strongly bound to calcium phosphate and were not precipitated at pH 5; these enzymes also had much lower molecular weights than the T antigen, as did dihydrofolic (FH(2)) reductase. Furthermore, higher ammonium sulfate concentrations were required to precipitate dCMP deaminase, dTMP kinase, and FH(2) reductase activities than to precipitate the T antigen. Another difference was that the T antigen was not stabilized, but dCMP deaminase, dTMP kinase, and dT kinase, were stabilized, respectively, by dCTP, dTMP, and dT or dTTP. Deoxyribonucleic acid (DNA) polymerase activity resembled the T antigen in adsorption to calcium phosphate, in precipitation by ammonium sulfate or at pH 5, and in the rate of inactivation when incubated at 38 C. However, the polymerase activity could be partly separated from the T antigen by Sephadex G-200 gel chromatography. The cell fraction containing partially purified T antigen also contained a soluble complement-fixing antigen (presumably a subunit of the viral capsid) which reacted with hyperimmune monkey sera. The latter antigen was present in very low titers or absent from cell extracts prepared from SV40-infected monkey kidney cell cultures which had been treated with ara-C at the time of infection, or from SV40-transformed mouse kidney (mKS) or hamster tumor (H-50) cells. The T antigen, however, was present in usual amounts in SV40-transformed cells or ara-C treated, infected cells.  相似文献   

4.
Clones were isolated from hamster cells transformed by the adenovirus 2-SV40 and adenovirus 12-SV40 transcapsidant hybrid viruses. The clones were characterized with respect to their cytomorphology, virus and antigen content, and the histomorphology of tumors induced by transplantation of the clonal sublines to hamsters. Three different cellular and colonial morphologies were observed. Clones with an SV40 morphology gave rise to tumors predominantly with an SV40 histology, whereas clones with an adenovirus morphology produced typical adenovirus tumors upon transplantation of the transformed cells. Clones which had features of both SV40 and adenovirus transformed cells gave rise to "intermediate" and adenovirus tumors. The results indicate that multiple events occur during transformation and tumorigenesis by the transcapsidant virus populations and provide an explanation for the multiplicity of findings which have been reported with these virus populations.  相似文献   

5.
The ability of adenovirus 7-simian virus 40 (SV40) hybrid (strain LL "E-46") to replicate decreased exponentially as a function of the amount of gamma-irradiation; the ability to induce SV40 and adenovirus 7 T antigen decreased at a much slower rate. Nevertheless, the virus was still able to transform African green monkey kidney cells at a radiation dosage that had completely destroyed its replication ability. All transformed colonies were positive for SV40 T antigen but were negative for adenovirus 7 T antigen. The adenovirus 7-SV40 hybrid transformed cells were superinfectible with SV40 virus. Two of the three transformed cell populations apparently did not sensitize hamsters against the appearance SV40 primary tumors, thus suggesting a deficiency in the SV40 transplantation antigen.  相似文献   

6.
The ribonucleic acid-deoxyribonucleic acid hybridization technique was utilized to determine the presence of adenovirus (ad) and SV40 genetic information and to determine which ad genomes were present in clones of hamster cells transformed with the ad 2-SV40 and ad 12-SV40 transcapsidant hybrid virus populations. The results were correlated with the morphology of the transformed cells and colonies. It was found that cells transformed by either transcapsidant virus which had an SV40 morphology contained the ad 7 and SV40 genomes, whereas cells with a typical ad morphology contained only ad genetic information. Cells and colonies with morphological features of both ad- and SV40-transformed cells contained either the ad 2, or ad 12 genomes, depending on the transcapsidant used, together with the ad 7 and SV40 genomes. The results indicate the following: at least three different events occurred during transformation of hamster cells by the transcapsidant virus populations; the morphology of the resulting clones is determined by the viral genome(s) present; the linkage of the ad 7-SV40 genomes is confirmed since the ad 7- SV40 genomes were never found to be dissociated; the defective ad 7-SV40 genomes are capable of causing transformation; and the transcapsidant particle is probably composed of only ad 7 and SV40 genetic information.  相似文献   

7.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

8.
Four new nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated. Although these viruses (designated Ad2(+)ND(2), Ad2(+)ND(3), Ad2(+)ND(4), and Ad2(+)ND(5)) were clonal derivatives of the same Ad2-SV40 hybrid population, they differ significantly from each other and from the previously isolated nondefective hybrid, Ad2(+)ND(1), in their biological properties or in the amount of SV40-specific RNA induced during lytic infection.Like Ad2(+)ND(1), Ad2(+)ND(2), and Ad2(+)ND(4) pass serially in both human embryonic kidney (HEK) and primary African green monkey kidney cells. In contrast, Ad2(+)ND(3) and Ad2(+)ND(5) pass serially only in HEK cells. Ad2(+)ND(2) is like Ad2(+)ND(1) in that it induces the SV40 U antigen, but not SV40 T antigen; however, in contrast to the perinuclear SV40 antigen induced by Ad2(+)ND(1), the SV40 antigen induced by Ad2(+)ND(2) is located peripherally in the cytoplasm as well as in the perinuclear region of infected cells. Ad2(+)ND(4) induces both the SV40 T and U antigens. Ad2(+)ND(3) and Ad2(+)ND(5) do not induce serologically detectable SV40 antigens and are distinguished from each other on the basis of the relative quantities of SV40-specific RNA which they induce. The induction of different SV40-specific functions suggests the incorporation of different segments of SV40 DNA within the genomes of the respective hybrid viruses.  相似文献   

9.
When simian virus 40 (SV40)-transformed mouse kidney cells (mKS) were grown in the presence of susceptible indicator cells, SV40 was readily recovered from: (i) 15 transformed cell lines, (ii) transformed cells subcultured 45 times over a 7-month period in medium containing antiviral serum and bromodeoxyuridine (dBU), (iii) 45 of 46 clonal lines isolated in the presence of antiviral serum, (iv) 19 of 19 secondary clones isolated from two clonal lines, and (v) dBU-resistant transformed cell lines. dBU-resistant SV40-transformed mouse kidney cell lines were selected and shown to contain the T antigen and to have normal levels of thymidylate kinase and deoxyribonucleic acid (DNA) polymerase, but to be deficient in thymidine (dT) kinase. Radioautographic and biochemical experiments demonstrated that very little (3)H-dT was incorporated into DNA of dBU-resistant cells during a 6-hr labeling period. After infection of dT kinase-deficient mKS cells with vaccinia virus, high levels of dT kinase were induced. The properties of SV40 recovered from dBU-sensitive and dBU-resistant cells were studied. SV40 recovered from transformed cells was shown to express in CV-1 cells at least six functions characteristic of parental virus: synthesis of capsid antigen, synthesis of T antigen, synthesis of viral DNA, induction of dT kinase, induction of DNA polymerase, and induction of host cell DNA synthesis. In addition, SV40 recovered from the transformed cells induced T antigen, dT kinase, deoxycytidylate deaminase, thymidylate kinase, and DNA polymerase in abortively infected mouse kidney cultures, and the virus was also capable of transforming primary cultures of mouse kidney cells.  相似文献   

10.
Simian virus 40 (SV40) infection of human diploid cells failed to cause an enhanced production of thymidine kinase during the first 10 days after infection. Thymidine kinase activities from extracts of SV40-transformed cultures (human or simian) were considerably higher than the activity levels in extracts from the normal cells of origin. In addition, whereas the kinase activities obtained for human diploid cultures decreased as the cell sheet became confluent, the kinase activities for SV40-transformed human cells remained high after confluence was reached. Antisera obtained from hamsters bearing SV40 or adeno-7-SV40 hybrid virus tumors selectively inhibited enzyme from transformed sources (human or simian). Also, the antisera selectively inhibited enzyme extracted from SV40-lytically infected monkey cells. Sera from normal animals or from hamsters bearing polyoma tumors failed to inhibit enzymes from normal, SV40-transformed, or SV40-lytically infected cells. The Michaelis constant of partially purified enzyme from SV40-transformed cells was two to five times as high as that obtained for partially purified enzyme from human diploid cell cultures.  相似文献   

11.
Viral nucleoprotein complexes were extracted from the nuclei of simian virus 40 (SV40)-infected TC7 cells by low-salt treatment in the absence of detergent, followed by sedimentation on neutral sucrose gradients. Two forms of SV40 nucleoprotein complexes, those containing SV40 replicative intermediate DNA and those containing SV40 (I) DNA, were separated from one another and were found to have sedimentation values of 125 and 93S, respectively. [(35)S]methioninelabeled proteins in the nucleoprotein complexes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition to VP1, VP3, and histones, a protein with a molecular weight of 100,000 (100K) is present in the nucleoprotein complexes containing SV40 (I) DNA. The 100K protein was confirmed as SV40 100K T antigen, both by immunoprecipitation with SV40 anti-T serum and by tryptic peptide mapping. The 100K T antigen is predominantly associated with the SV40 (I) DNA-containing complexes. The 17K T antigen, however, is not associated with the SV40 (I) DNA-containing nucleoprotein complexes. The functional significance of the SV40 100K T antigen in the SV40 (I) DNA-containing nucleoprotein complexes was examined by immunoprecipitation of complexes from tsA58-infected TC7 cells. The 100K T antigen is present in nucleoprotein complexes extracted from cells grown at the permissive temperature but is clearly absent from complexes extracted from cells grown at the permissive temperature and shifted up to the nonpermissive temperature for 1 h before extraction, suggesting that the association of the 100K T antigen with the SV40 nucleoprotein complexes is involved in the initiation of SV40 DNA synthesis.  相似文献   

12.
A series of viable recombinants between adenovirus 2 (Ad2) and simian virus 40 (SV40) (nondefective Ad2-SV40 hybrids) have been isolated. The members of this series (designated Ad2(+)ND(1) through Ad2(+)ND(5)) differ from one another in the early SV40-specific antigens and the SV40-specific RNA species which they induce in infected cells. They also contain different amounts of SV40 DNA as shown by RNA-DNA hybridization techniques. We have examined the structure of the DNA molecules from these hybrids, using electron microscope heteroduplex mapping techniques. Each hybrid was found to contain a single segment of SV40 DNA of characteristic size covalently inserted at a unique location in the adenovirus 2 DNA molecule. The SV40 segments of the various hybrids formed an overlapping series with a common end point. When the results of the electron microscopic study were combined with data on antigen induction, it was found that a self-consistent map could be constructed which related specific regions of the SV40 genome to the induction of specific antigens. The order of these early SV40 antigen inducing regions in the SV40 DNA segments contained in the nondefective hybrids is: U antigen, tumor specific transplantation antigen, and T antigen with the U antigen region being nearest the common end point.  相似文献   

13.
An in vitro method for the quantitative measurement of transformation in hamster embryo fibroblasts by the PARA [defective simian virus 40 (SV40)]-adenovirus 7 hybrid has been developed. Transformation by PARA particles followed one-hit kinetics with a ratio of 1 focus-forming unit per 250 plaque-forming units. The method of viral adsorption had a direct effect upon the total number of foci which developed but not on the quantitative aspects of this assay. A fluorescent-focus assay was developed which provided a direct correlation of the observed morphological transformation and the presence of the PARA genome. This fluorescent-focus assay utilized detection of the SV40 tumor antigen, which was present in all foci transformed by PARA. Single foci induced by PARA were isolated and grown into cell lines. Two types of foci were observed and isolated; the first contained cells having a cuboidal or SV40-type morphology, and the second consisted of epithelial or adenovirus-type transformed cells. Both types contained the SV40 tumor and SV40 surface antigens as determined by the indirect fluorescence technique; however, only the epithelial cells contained the adenovirus 7 tumor antigen. All five cell lines which were injected into weanling Syrian hamsters were found to be oncogenic. These cell lines induced antibodies to both SV40 and adenovirus 7 tumor antigens in tumor-bearing animals.  相似文献   

14.
The infection of secondary cultures of Chinese hamster cells with simian virus 40 (SV40) induces the appearance of cells with polyploid deoxyribonucleic acid (DNA) content or chromosomal component within one cell generation. The mechanism of this phenomenon was studied by the use of 5-bromodeoxyuridine (BUdR) incorporation as a DNA density marker. When cultures were treated with (14)C-BUdR and colcemide and harvested at 48 hr postinfection, only hybrid and light DNA molecules were found in control cultures, whereas in infected cultures there were also heavy molecules. The proportion of heavy DNA synthesized during the experimental period varied from 13 to 25%. It was determined by DNA-DNA hybridization that the heavy DNA consisted of cellular DNA. In radioautographic experiments, it was shown that, under the conditions used, a fraction of the infected cell population twice replicated its complete DNA content. Analysis of the kinetics indicated that the heavy DNA resulted from the reinitiation of DNA synthesis after the initial replication of the entire cell DNA. It was concluded that, after infection with SV40, a fraction of the Chinese hamster cell population undergoes two cycles of DNA synthesis without intervening mitosis.  相似文献   

15.
Simian Virus 40-Induced T and Tumor Antigens   总被引:11,自引:6,他引:5       下载免费PDF全文
Antigen extracts from simian virus 40 (SV40) transplanted hamster tumors were studied by rate-zonal centrifugation. Three species or molecular forms of antigen were demonstrated. The major antigen component corresponded to a molecular weight of 65,000 to 75,000, and two larger species were detectable in smaller quantities. Similar studies were carried out on SV40 virus-induced T antigen from BSC-1 cells. Three antigen components were again detected. Quantitative differences in the expression of "T" and tumor antigen species were reproducibly found.  相似文献   

16.
R E Lanford  J S Butel 《Cell》1984,37(3):801-813
An SV40-adenovirus 7 hybrid virus, PARA(cT), has been described that is defective for the nuclear transport of SV40 large tumor antigen. An SV40(cT) mutant was constructed using SV40 early and late region DNA fragments derived from PARA(cT) and wild-type SV40 respectively. The SV40(cT)-3 construct is defective for viral replication, but can be propagated in COS-1 cells. T antigen induced by SV40(cT)-3 is localized in the cytoplasm of infected cells. The cT mutation also inhibits the transport of wild-type T antigen; COS-1 cells lose their constitutive expression of nuclear T antigen after infection with SV40(cT)-3. Sequence analysis revealed that the cT mutation results in the replacement of a positively charged lysine in wild-type T antigen with a neutral asparagine at amino acid number 128, demonstrating that the alteration of a single amino acid is sufficient to abolish nuclear transport. Implications of the cT mutation on possible mechanisms for the transport of proteins to the nucleus are discussed.  相似文献   

17.
Three isolates of PARA (particle aiding replication of adenovirus)-adenovirus 7 out of a total of 112 clonal progeny derived by two successive plaque purifications in green monkey kidney cells (GMK) were found to induce the synthesis of simian papovavirus40 (SV 40) tumor (T) antigen in the cytoplasm of infected cells. The variant viruses induced plaque formation in human embryonic kidney cells which followed one-hit kinetics. In GMK cells, plaque formation followed two-hit kinetics which converted to first-order kinetics in the presence of additional helper adenovirus type 7. Analysis of plaque progeny from human cells showed that the progeny could replicate only in human cells, whereas progeny from monkey cells could multiply in both human and monkey cells. Heterologous human adenoviruses were able to enhance plaque formation by the variant viruses in monkey kidney cells. Neutralization tests indicated that both components of the populations had a type 7 adenovirus capsid. All three viruses were capable of inducing SV40 transplantation immunity in weanling hamsters. These results indicate the three variants are PARA-adenovirus 7 populations. Response of the induction of the synthesis of the cytoplasmic antigen to metabolic inhibitors was the same as for the synthesis of the nuclear SV40 T antigen. Different pools of sera which reacted with the intranuclear SV40 T antigen also detected the cytoplasmic antigen induced by the variant viruses. An adsorption experiment with cells containing either nuclear or cytoplasmic T antigen to remove tumor antibody from hamster sera also indicated that it is probably SV40 T antigen which is responsible for the cytoplasmic reaction. The species of the host cell-human, simian, or rabbit-appeared to play no role in the altered localization of this antigen. It is postulated that these PARA variants are further defective in some virus-mediated transport mechanism which shifts the T antigen from the cytoplasm to the nucleus.  相似文献   

18.
Simian virus 40 (SV40)-transformed cells and cells infected by the nondefective adenovirus 2(Ad2)-SV40 hybrid viruses Ad2+ND1 and Ad2+ND2 were analyzed for SV40 T- and U-antigens, respectively, using individual hamster SV40 tumor sera or serum for which U-antibodies were removd by absorption. These studies showed that (i) T- and U-antigens can be defined by separate classes of antigenic determinants and (ii) the U-antigenic determinants in SV40-transformed cells and in hybrid virus-infected cells are similar. The apparent discrepancy in the subcellular location of U-antigen in SV40-transformed cells (nuclear location) and in hybrid virus-infected cells (perinuclear location) as determined by immunofluorescence staining of methanol/acetone-fixed cells could be resolved by treating hybrid virus-infected cells with a hypotonic KCl solution before fixation. Upon this treatment hybrid virus-infected cells also showed nuclear U-antigen staining. The possibility of an association of T- and U-antigens with different nuclear subfractions in SV40-transformed cells was investigated. Detergent-cleaned nuclei of SV40-transformed cells were fractionated into nuclear matrices and a DNase-treated, high-salt nuclear extract. Analysis of the nuclear matrices by immunofluorescence microscopy with T+U+ and T+U- hamster SV40 tumor serum revealed that U-antigen remained associated with the nuclear matrices, whereas T-antigen could not be detected in this nuclear subfraction. T-antigen, however, could be immunoprecipitated from nuclear extracts of the SV40-transformed cells.  相似文献   

19.
Five nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid viruses have been isolated and found to contain segments of SV40 DNA covalently linked to Ad2 DNA. The quantity of SV40 DNA present is a stable characteristic of each hybrid virus, and varies from less than 5% (in Ad2(+)ND(3)) to more than 30% (in Ad2(+)ND(4)) of the SV40 genome. We have characterized the SV40 portions of these hybrids by relating the SV40-specific RNA sequences transcribed in cells infected with each hybrid virus to those transcribed in cells infected with each of the other hybrid viruses and with SV40 itself. RNA-DNA hybridization-competition experiments indicate that the number of unique SV40 RNA sequences transcribed in infected cells is proportional to the size of the SV40 DNA segment contained within each hybrid and, in the case of the three hybrids which induce detectable SV40-specific antigens, to the number of SV40 antigens induced. Furthermore, the SV40-specific RNA sequences transcribed from any one of the hybrids are completely represented in the RNA transcribed from all other hybrids with longer SV40 segments. Thus, the SV40 DNA regions in the five hybrid viruses appear to contain some nucleotide sequences in common. The SV40-specific RNA transcribed from Ad2(+)ND(4), the hybrid containing the largest SV40 segment, is qualitatively similar to the SV40-specific RNA transcribed early (i.e., prior to viral DNA replication) in SV40 lytic infection. Thus, it appears that no significant amount of late SV40 DNA is transcribed during infection by any of the five nondefective Ad2-SV40 hybrid viruses.  相似文献   

20.
A specific antiserum was raised in rabbits against D2 hybrid T antigen that had been purified from HeLa cells infected with the adenovirus/simian virus 40 hybrid, Ad2(+)D2. The specificity of this serum was compared with that of a conventional hamster antiserum against simian virus 40-induced tumors by immunoprecipitation and by a new radioimmune assay that can detect nanogram quantities of D2 hybrid T antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号