首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Zn–salophen complex has been incorporated into POPC large unilamellar liposomes (LUV) obtained in phosphate buffer at pH 7.4. Fluorescence optical microscopy and anisotropy measurements show that the complex is located at the liposomal surface, close to the polar headgroups. The interaction of the POPC phosphate group with Zn2 + slowly leads to demetallation of the complex. The process follows first order kinetics and rate constants have been measured fluorimetrically in pure water and in buffered aqueous solution.The coordination of the phosphate group of monomeric POPC with salophen zinc also occurs in chloroform as detected by ESI-MS measurements.The effect of the Zn–salophen complex on the stability of POPC LUV has been evaluated at 25 °C by measuring the rate of release of entrapped 5(6)-carboxyfluorescein (CF) in the presence and in the absence of Triton X-100 as the perturbing agent. It turns out that the inclusion of the complex significantly increases the stability of POPC LUV.  相似文献   

2.
《Process Biochemistry》2014,49(5):821-829
Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. We investigated the effects of Zn2+ on the enzymatic activity and unfolding and aggregation of Euphausia superba arginine kinase (ESAK). Zn2+ inhibited the activity of ESAK (IC50 = 0.027 ± 0.002 mM) following first-order kinetics consistent with the transition from a mono-phasic to a bi-phasic reaction. Double-reciprocal Lineweaver–Burk plots indicated that Zn2+ induced non-competitive inhibition of arginine and ATP. Circular dichroism spectra and spectrofluorometry results showed that Zn2+ induced secondary and tertiary structural changes in ESAK with exposure of hydrophobic surfaces and directly induced ESAK aggregation. The addition of osmolytes such as glycine and proline successfully blocked ESAK aggregation, recovering the conformation and activity of ESAK. Our study demonstrates the effect of Zn2+ on ESAK enzymatic function and folding and unfolding mechanisms, and might provide important insights into other metabolic enzymes of invertebrates in extreme climatic marine environments.  相似文献   

3.
《IRBM》2008,29(2-3):136-140
Alkaline phosphatase conductometric biosensors consisting of interdigitated gold electrodes and enzyme membranes have been used for assessment of heavy-metal ions in water. These analytes act as enzyme inhibitors. Enzyme residual activity has been measured in Tris-nitrate buffer without metal preincubation in the presence of Mg2+ ions as activator. The results indicate that the toxicity of the various metals tested toward immobilized phosphatase is ranged as follows: Cd2+ > Co2+ > Zn2+ > Ni2+ > Pb2+. Detection limits were about 0.5 ppm for Cd2+, 2 ppm for both Zn2+ and Co2+, 5 ppm for Ni2+ and 40 ppm for lead ions. In addition, the responses during 10 h were stable (RSD 4%) and a drift of about 7% per day was observed. The storage stability in buffer solution at 4 °C remained stable for more than one month.  相似文献   

4.
《Process Biochemistry》2007,42(3):344-351
A strategy that optimization of medium compositions for maximum biomass followed by feeding of sucrose for maximum polysaccharide synthesis was developed for enhancing polysaccharide production in suspension culture of protocorm-like bodies (PLBs) of Dendrobium huoshanense C.Z. Tang et S.J. Cheng. In growth stage, the original half-strength MS medium was optimized with carbon sources, nitrogen sources and metal ion combinations. The effects of different carbon sources on PLBs growth were remarkable and sucrose at 35 g l−1 was the most suitable. Sole nitrate nitrogen of 30 mmol l−1 was the best for PLBs growth. Metal ions (Ca2+, Fe2+, Mn2+ and Zn2+) showed different influences on PLBs growth. The optimal concentration of Ca2+, Fe2+, Mn2+ and Zn2+ was 4.5 mmol l−1, 0.1 mmol l−1, 0.5 mmol l−1 and 0.06 mmol l−1, respectively. In the optimized medium (sucrose, nitrate, Ca2+, Fe2+, Mn2+ and Zn2+ concentration as described above, the other component concentration seen in half-strength MS), 33.9 g DW l−1 PLBs were harvested after 30 days of culture and biomass increase was improved 245% as compared with that in the original medium. In production stage, polysaccharide synthesis was significantly improved by the feeding sucrose. The maximum polysaccharide production (22 g l−1) was obtained in the case of 50 g l−1 sucrose feeding at day 30 of culture, which was about 109-fold higher than that in the original medium without feeding of sucrose.  相似文献   

5.
A Cu/Zn-superoxide dismutase (SOD) was characterized for the first time from Beauveria bassiana by gene cloning, heterogeneous expression and function analysis. This 154-aa SOD (BbSod1) was deduced from a 465-bp gene cloned, showing 49–96% sequence identity to Cu/Zn-SODs from other 57 fungi. BbSod1 and its form engineered with two site-directed mutations P143S and P145L (BbSod1-Mut) or a fused copper chaperon Lys7 (BbSod1-Lys7) were expressed well in Escherichia coli. Crude extracts and purified BbSod1-Mut from cell cultures exhibited much higher antioxidation activities than the counterparts of BbSod1-Lys7 whereas BbSod1 showed no substantial activity. The engineered enzymes were best induced by overnight incubation at 20 °C in Luria-Bertani medium including 2.5 mM Cu2+, 0.5 mM Zn2+ and 0.5 mM isopropyl-d-thiogalactopyranoside after 5-h growth to log-phase at 37 °C. Our results highlight alternative means to producing highly active fungal Cu/Zn-SOD in E. coli by making use of the two site-directed mutations without chaperon.  相似文献   

6.
AimsTo investigate the role of nitric oxide synthase (NOS) and intracellular free zinc ion (Zn2+) in regulation of ultraviolet B light (UVB)-induced cell damage and apoptosis.Main methodsReal-time confocal microscopy measurement was used to determine the changes of intracellular free zinc concentration under different conditions. Cell apoptotic death was determined using fluorescein isothiocyanate (FITC) conjugated-annexin V (ANX5)/PI labeling followed by flow cytometry. Western analysis was used to determine cell apoptosis and eNOS uncoupling.Key findingsUVB induced an elevation of Zn2+ within 2 min of exposure. The UVB-induced intracellular Zn2+ elevation was dependent on the increase of constitutive nitric oxide synthase (cNOS) activity and production of superoxide. Removal of Zn2+ with a lower concentration (< 25 μM) of N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a Zn2+-specific chelator, did not induce cell death or prevent cells from UVB-induced apoptosis. However, a higher [TPEN] (> 50 μM) was cytotoxic to cells, but prevented cells from further UVB-induced apoptosis. The higher [TPEN] also induced cNOS uncoupling. Furthermore, treating the cells with a membrane permeable superoxide dismutase (PEG-SOD) inhibited Zn2+ release and reduced apoptotic cell death after UVB treatment. The results demonstrated a complex and dynamic regulation of UVB-induced cell damage.SignificanceOur findings not only advance our understanding of the correlations between cNOS activation and Zn elevation, but also elucidated the role of cNOS in regulation of oxidative stress and apoptosis upon UVB-irradiation.  相似文献   

7.
An l-ornithine high producing strain Bacillus thuringiensis SK20.001 was screened by our laboratory. An intracellular arginase used to biosynthesize l-ornithine from the strain was purified and characterized. The final specific arginase activity was 589.2 units/mg, with 70.1 fold enrichment and 22.4% recovery. The molecular weight of the enzyme was approximately 33,000 Da as evaluated by SDS-PAGE and 191,000 Da as determined by gel filtration. The enzyme had an optimum pH of 10.0 and an optimum temperature of 40 °C. It was stable from pH 8.0–12.0 and <50 °C without Mn2+. The presence of Mn2+ and Ni2+ had strong effects on the enzyme activity, and Mn2+ significantly increased the thermal stability of the enzyme. The arginase was slightly inhibited by Ca2+, Fe2+ and Zn2+. Trp, Asp, Glu, Tyr, and Arg residues were directly involved in the arginase activity evaluated by chemical modifications. The Km and Vmax for l-arginine were estimated to be 15.6 mM and 538.9 μmol/min/mg. The biosynthesis yield of l-ornithine was 72.7 g/L with the enzyme.  相似文献   

8.
A novel dioscin-α-l-rhamnosidase was isolated and purified from fresh bovine liver. The activity of the enzyme was tested using diosgenyl-2,4-di-O-α-l-rhamnopyranosyl-β-d-glucopyranoside as a substrate. It was cleaved by the enzyme to two compounds, rhamnoses and diosgenyl-O-β-d-glucopyranoside. The optimal conditions for enzyme activity were that temperature was at 42 °C, pH was at 7, reaction time was at 4 h, and the substrate concentration was at 2%. Furthermore, metal ions such as Fe3+, Cu2+, Zn2+, Ca2+ and Mg2+ showed different effects on the enzyme activity. Mg2+ acted as an activator whereas Cu2+, Fe3+, and Zn2+ acted as strong inhibitors in a wide range of concentrations from 0 to 200 mM. It was interesting that Ca2+ played a role as an inhibitor when its concentration was at 10 mM and acted as an activator at the other concentrations for the enzyme. Moreover, the molecular weight of enzyme was determined as 75 kDa.  相似文献   

9.
《Process Biochemistry》2007,42(1):83-88
The piceid-β-d-glucosidase that hydrolyzes the β-d-glucopyranoside bond of piceid to release resveratrol was isolated from Aspergillus oryzae sp.100 strain, and the enzyme was purified and characterized. The enzyme was purified to one spot in SDS polyacrylamide gel electrophoresis, and its molecular weight was about 77 kDa. The optimum temperature of the piceid-β-d-glucosidase was 60 °C, and the optimum pH was 5.0. The piceid-β-d-glucosidase was stable at less than 60 °C, and pH 4.0–5.0. Ca2+, Mg2+ and Zn2+ ions have no significant effect on enzyme activity, but Cu2+ ion inhibits enzyme activity strongly. The Km value was 0.74 mM and the Vmax value was 323 nkat mg−1 for piceid.  相似文献   

10.
The diversity and metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in Yunnan, China were investigated. Four hundred and ninety-five endophytic fungi were isolated from 690 tissue segments. The endophytic fungal colonization extent and isolation extent ranged from 59 % to 75 %, and 0.42–0.93, respectively, and a positive correlation was detected between them. Stems harboured more endophytic fungi than leaves in each plant species, and the average colonization extent of stems was 82 %, being significantly higher than that of leaves (47 %) (P  0.001, chi-square test). The fungi were identified to 20 taxa in which Phoma, Alternaria and Peyronellaea were the dominant genera and the relative frequencies of them were 39.6 %, 19.0 % and 20.4 %, respectively. Metal tolerance test showed that 3.6 mM Pb2+ or 11.5 mM Zn2+ exhibited the greatest toxicity to some isolates and they did not grow on the metal-amended media. In contrast, some isolates were growth stimulated in the presence of tested metals. The isolates of Phoma were more sensitive to Zn2+ than the isolates of Alternaria and Peyronellaea. However, the sensitivity of isolates to Pb2+ was not significantly different among Phoma, Alternaria, Peyronellaea and other taxa (P > 0.05, chi-square test). Our results suggested that fungal endophyte colonization in Pb–Zn polluted plants is moderately abundant and some isolates have a marked adaptation to Pb2+ and Zn2+ metals, which has a potential application in phytoremediation in this area.  相似文献   

11.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

12.
《Process Biochemistry》2010,45(8):1236-1244
Keratins are important bioresources for apparels and feedstuffs, but recalcitrant to common enzymes. Now, it is popular and essential to develop keratinolytic enzymes for environmental prevention and improvement of keratin product quality. In the study, the medium optimization, purification, characterization and application of the keratinase from a newly isolated Chryseobacterium L99 sp. nov. were conducted. Exogenous sucrose, malt sugar, glucose, starch, tryptone, Mg2+, Zn2+, Ca2+ and Cu2+ could promote the keratinase production, while exogenous urea, NH4Cl and yeast extract exhibited strong inhibition effects. Response surface methodology predicted a maximum keratinase yield of 213.8 U mL−1, at (g L−1) sucrose 16.8, MgCl2·6H2O 1.9, feather keratin 40.0, NaH2PO4·2H2O 6.0 and K2HPO4·6H2O 1.0, where dry cell weight nearly had a minimum 8.58 g L−1. Then, a serine keratinase about 33 kDa was purified, and its optimal activity was acquired at 40 °C and pH 8.0 with K+, Zn2+or Co2+. Compared with Savinase 16 L and transglutaminase, the L99 keratinase could efficient prevent shrinkage and eliminate directional frictional effect of wool, indicating it as a promising prospect in the biotreatment of wool fibres.  相似文献   

13.
Various immobilized metal ions affinity membranes (IMAMs) were prepared from the regenerated cellulose membrane (RC membrane) and chelated with various metal ions such as Co2+, Ni2+, Cu2+ and Zn2+. The D-hydantoin-hydrolyzing enzyme (DHTase) harboring a poly-His tagged residue was used as a model protein to be immobilized on the prepared IMAMs through the direct metal–protein interaction forces. The adsorption isotherm and the kinetic parameters Vmax, Km,app of DHTase on IMAMs were studied. The cobalt ions chelated IMAM (Co-IMAM) was found to yield the highest specific activity of DHTase. Under the immobilization condition, the cobalt ion chelated amount was 161.4 ± 4.7 μmol/disk with a DHTase activity of 4.1 ± 0.1 U/disk. As compared to the free DHTase, the immobilized DHTase membrane could achieve a broader pH tolerance and higher thermal stability. In addition, 98% of the residual activity could be retained for 7-times repeated use. Only little activity loss was observed within 36-day storage at 4 °C. This is the first report concerning about using cobalt ion as the effective chelated metal ion for simultaneous purification and immobilization operation.  相似文献   

14.
Aminopeptidase B was purified from goat brain with a purification fold of ~280 and a yield of 2.7%. The enzyme revealed a single band on both native acrylamide gel and SDS-PAGE thereby confirming apparent homogeneous preparation and its monomeric nature. The enzyme exhibited a molecular mass of 80.2 kDa and 79.7 kDa on Sephadex G-200 and SDS-PAGE respectively. The pH optimum was 7.4 and the enzyme was stable between pH 6.0 and 9.0. l-Arg-βNA was the most rapidly hydrolyzed substrate followed by Lys-βNA. The Km value with Arg-βNA was found to be 0.1 mM. Metal chelating and –SH reactive agents strongly inhibited the enzyme activity. 1,10-Phenanthroline exhibited mixed type of inhibition with a Ki of 5 × 10?5 M. The enzyme was highly sensitive to urea. Metal ions like Ni2+, Cd2+, Fe2+and Hg2+ inhibited the enzyme, whereas Co2+, Zn2+, Mn2+and Sn2+ slightly activated the enzyme.  相似文献   

15.
《Process Biochemistry》2010,45(5):694-699
An extracellular halophilic α-amylase from Nesterenkonia sp. strain F was purified to homogeneity by 80% ethanol precipitation, Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography, with a 10.8-fold increase in specific activity. The molecular mass of the amylase was estimated to be 100 kDa and 106 kDa by SDS–PAGE and gel filtration chromatography, respectively. The enzyme showed maximal activity at pH 7.5 and 45 °C. The amylase was active in a wide range of salt concentrations (0–4 M) with its maximum activity at 0.5 M NaCl or 1 M KCl and was stable at the salts concentrations between 1 M and 4 M. Fe3+, Cu2+, Zn2+ and Al3+ strongly inhibited the enzyme, whereas Ca2+ stimulated the amylase activity. The α-amylase was inhibited by EDTA, but was not inhibited by PMSF and β-mercaptoethanol. The enzyme showed remarkable stability towards 0.5% SDS and sarcosyl, and 2% each of Triton X-100, Tween 80 and Tween 20. Km value of the amylase for soluble starch was 4.5 mg/ml. The amylase hydrolyzed 38% of raw wheat starch and 20% of corn starch in a period of 48 h. The major products of soluble starch hydrolysis were maltose, maltotriose and maltotetraose, indicating an α-amylase activity.  相似文献   

16.
Polyphenoloxidase (PPO) plays an important role in the browning of vegetables, fruits and edible fungi. The effects of ultrasound, malic acid, and their combination on the activity and conformation of mushroom (Agaricus bisporus) PPO were studied. The activity of PPO decreased gradually with the increasing of malic acid concentrations (5–60 mM). Neither medium concentrations (10, 20, 30 mM) malic acid nor individual ultrasound (25 kHz, 55.48 W/cm2) treatment could remarkably inactivate PPO. However, the inactivation during their combination was more significant than the sum of ultrasound inactivation and malic acid inactivation. The inactivation kinetics of PPO followed a first-order kinetics under the combination of ultrasound and malic acid. The conformation of combination treated PPO was changed, which was reflected in the decrease of α-helix, increase of β-sheet contents and disruption of the tertiary structure. Results of molecular microstructure showed that ultrasound broke large molecular groups of PPO into small ones. Moreover, combined treatment disrupted the microstructure of PPO and molecules were connected together.  相似文献   

17.
Polygalacturonases are the pectinolytic enzymes that catalyze the hydrolytic cleavage of the polygalacturonic acid chain. In the present study, polygalacturonase from Aspergillus niger (MTCC 3323) was purified. The enzyme precipitated with 60% ethanol resulted in 1.68-fold purification. The enzyme was purified to 6.52-fold by Sephacryl S-200 gel-filtration chromatography. On SDS–PAGE analysis, enzyme was found to be a heterodimer of 34 and 69 kDa subunit. Homogeneity of the enzyme was checked by NATIVE-PAGE and its molecular weight was found to be 106 kDa. The purified enzyme showed maximum activity in the presence of polygalacturonic acid at temperature of 45 °C, pH of 4.8, reaction time of 15 min. The enzyme was stable within the pH range of 4.0–5.5 for 1 h. At 4 °C it retained 50% activity after 108 h but at room temperature it lost its 50% activity after 3 h. The addition of Mn2+, K+, Zn2+, Ca2+ and Al3+ inhibited the enzyme activity; it increased in the presence of Mg2+ and Cu2+ ions. Enzyme activity was increased on increasing the substrate concentration from 0.1% to 0.5%. The Km and Vmax values of the enzyme were found to be 0.083 mg/ml and 18.21 μmol/ml/min. The enzyme was used for guava juice extraction and clarification. The recovery of juice of enzymatically treated pulp increased from 6% to 23%. Addition of purified enzyme increased the %T650 from 2.5 to 20.4 and °Brix from 1.9 to 4.8. The pH of the enzyme treated juice decreased from 4.5 to 3.02.  相似文献   

18.
A novel β-glucuronidase from filamentous fungus Penicillium purpurogenum Li-3 was purified to electrophoretic homogeneity by ultrafiltration, ammonium sulfate precipitation, DEAE-cellulose ion exchange chromatography, and Sephadex G-100 gel filtration with an 80.7-fold increase in specific activity. The purified β-glucuronidase is a dimeric protein with an apparent molecular mass of 69.72 kDa (m/z = 69,717), determined by MALDI/TOF-MS. The optimal temperature and pH of the purified enzyme are 40 °C and 6.0, respectively. The enzyme is stable within pH 5.0–8.0, and the temperature up to 45 °C. Mg2+ ions enhanced the activity of the enzyme, Ca2+ and Al3+ showed no effect, while Mn2+, Zn2+, Hg2+ and Cu2+ substantially inhibited the enzymatic activity. The Km and Vmax values of the purified enzyme for glycyrrhizin (GL) were evaluated as 0.33 mM and 59.0 mmol mg?1 min?1, respectively. The purified enzyme displayed a highly selective glycyrrhizin-hydrolyzing property and converted GL directly to glycyrrhetic acid mono-glucuronide (GAMG), without producing byproduct glycyrrhetic acid (GA). The results suggest that the purified enzyme may have potential applications in bio-pharmaceutical and biotechnological industry.  相似文献   

19.
Lipase production (8.02 ± 0.24 U/ml) by the yeast Aureobasidium pullulans HN2.3 isolated from sea saltern was carried by using time-dependent induction strategy. The lipase in the supernatant of the yeast cell culture was purified to homogeneity with a 3.4-fold increase in specific lipase activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography and anion-exchange chromatography. According to the data on SDS polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 63.5 kDa. The optimal pH and temperature of the purified enzyme were 8.5 and 35 °C, respectively. The enzyme was greatly inhibited by Hg2+, Fe2+ and Zn2+. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride, not inhibited by ethylene diamine tetraacetic acid (EDTA), but weakly inhibited by iodoacetic acid. It was found that the purified lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

20.
The SDG-β-d-glucosidase that hydrolyzes the glucopyranoside bond of secoisolariciresinol diglucoside (SDG) to release secoisolariciresinol (SECO) was isolated from Aspergillus oryzae 39 strain and the enzyme was purified and characterized. The enzyme was purified to one spot in SDS polyacrylamide gel electrophoresis, and its molecular weight was about 64.9 kDa. The optimum temperature of the SDG-β-d-glucosidase was 40 °C, and the optimum pH was 5.0. The SDG-β-d-glucosidase was stable at less than 65 °C, and pH 4.0–6.0. Ca2+, K+, Mg2+ and Na+ ions have no significant effect on enzyme activity, Zn2+ and Cu2+ ions have weakly effect on enzyme activity, but Fe3+ ion inhibits enzyme activity strongly. The Km value of SDG-β-d-glucosidase was 0.14 mM for SDG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号