首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xanthan-g-poly(acrylamide) was synthesized employing microwave-assisted and ceric-induced graft copolymerization, and was characterized by FT-IR, DSC, XRD and SEM studies. Matrix tablets of diclofenac sodium were formulated using graft copolymer as the matrix by direct compression technique. Release behavior of the graft copolymer was evaluated using USP type-II dissolution apparatus in 900 ml of phosphate buffer (pH 6.8), maintained at 37 °C and at 50 rpm. Microwave-assisted grafting provided graft copolymer with higher % grafting in a shorter time in comparison to the ceric-induced grafting. The % grafting was found to increase with the increase in the power of microwave and/or time of exposure. The matrix tablets were found to release the drug by zero-order kinetics, and the faster release of drug was observed from the graft copolymer matrix as compared to the xanthan gum matrix. It was observed that grafting reduces the swelling, but increases the erosion of xanthan gum.  相似文献   

2.
Chitosan/carboxymethyl cashew gum microspheres (CH/CMCG) were prepared with carboxymethyl cashew gum with two different degrees of substitution (DS) and loaded with bovine serum albumin (BSA). In water, for microspheres formed using low molar mass chitosan (LCH) sample swelling was observed for both CMCG samples and CMCG sample with higher DS showed greater swelling. Using high molar mass chitosan (HCH) sample swelling was observed only for microsphere with high DS of CMCG (DS = 0.44). At pH 7.4, the HCH sample led to a lower degree of swelling. The diffusion coefficients Dv were higher for the higher DS of CMCG in both media and the HCH sample had a lower Dv than LCH one. Faster BSA release rates were observed for beads prepared with the higher DS, whereas those prepared with DS = 0.16 took twice the time to reach similar release profiles. All microsphere systems investigated had a non-Fickian BSA release mechanism.  相似文献   

3.
Low-molecular-weight chitosan (LMWC) was obtained by enzymatic degradation and ultrafiltration separation. LMWC nanoparticles with LMWC having 20 kDa weight average molecular weight (Mw) were then prepared by solvent evaporation method. The resultant nanoparticles were spherical with a narrow particle size distribution. LMWC nanoparticles loaded with insulin as a model drug were prepared. The average entrapment efficiency of insulin could reach up to 95.54%. The in vitro drug release profiles from the nanoparticles showed an initial burst of release in the first 2 h, followed by zero order release kinetics. In vivo pharmacodynamics of chitosan nanoparticles containing insulin showed that the nanoparticles showed some hypoglycemic activity. Compared with an insulin solution, a relative bioavailability of 0.737 was observed for four times the dosage of insulin in the chitosan nanoparticles after pulmonary administration.  相似文献   

4.
In this paper, a simple and versatile coacervation technique has been developed by using an ultrasound-assisted oil/water emulsion method for the preparation of antifungal agent-loaded microcapsules. Two types of chitosan microcapsules are successfully prepared. The mean particle size of the chitosan/miconazole nitrate microcapsules is 2.6 μm and that of the chitosan/clotrimazole microcapsules is 4.1 μm. The encapsulation efficiency of the chitosan/miconazole nitrate microcapsules (77.58–96.81%) is relatively higher than that of the chitosan/clotrimazole microcapsules (56.66–93.82%). The in vitro drug release performance of the microcapsules shows that the chitosan/miconazole nitrate microcapsules release about 49.5% of the drug while chitosan/clotrimazole microcapsules release more than 66.1% of the drug after 12 h under a pressure of 5 kg at pH 5.5, which is similar to the pH of human skin. The prepared drug-loaded microcapsules could be applied onto bandages or socks, and will continuously release antifungal drugs in a controlled manner under pressure.  相似文献   

5.
The polyelectrolyte complex (PEC) effect between hyaluronic acid (HA) and chitosan was explored to recover HA from fermentation broth. Chitosan was conjugated with the magnetic nanoparticles by co-precipitation method to facilitate its recovery. The magnetic chitosan particles (chitosan–magnetite) have an average size about 5 μm and point of zero charge (PZC) around 6.5. pH lower than PZC favored the HA capture. About 39 mg of HA was captured per gram of particles at pH 6. Nearly quantitative release of captured HA was achieved at pH 8. Although HA could not be directly isolated from Streptococcus zoopedemics fermentation broth by manipulating pH between 6 and 8, HA free of contaminant protein could be purified from the crude ethanol precipitate using chitosan–magnetite.  相似文献   

6.
In this study, chitosan was used as a flocculant to harvest freshwater microalgae Chlorella vulgaris. The recovery efficiency of C. vulgaris was tested at various chitosan concentrations. 120 mg/L of chitosan showed the highest efficiency (92 ± 0.4%) within 3 min. The maximum concentration factor of 10 was also achieved at this dose of chitosan. The harvesting efficiency was pH dependent. pH 6.0 showed the highest harvesting efficiency (99 ± 0.5%). Measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that a biopolymer, chitosan, can be a promising flocculant due to its high efficacy, low dose requirements, and short settling time.  相似文献   

7.
The reproducibility of the determination of the molecular weight of chitosans in the 90–210 kDa range (Mn) by analytical size exclusion chromatography with multi-angle laser light scattering (SEC-MALLS) was improved by reducing the salt concentration in the mobile phase from (0.3 M acetic acid, 0.2 M sodium acetate, and 0.8 mM sodium azide) to (0.15 M acetic acid, 0.1 M sodium acetate, and 0.4 mM sodium azide) using Tosoh TSKgel G6000PWXL and G5000PWXL columns in series. The variability of measured molecular weight was significantly reduced by lowering the acetate concentration in the mobile phase, while the average molecular weight did not change significantly. The coefficient of variation of the number-average molecular weight, CV(Mn), decreased from 7–12% to 3–6% upon mobile phase dilution. This reduced variability in molecular weight of chitosans obtained from SEC is a significant improvement when precise values of chitosan molecular weight are required, for example in stability studies where viscosity changes in concentrated chitosan solutions are assessed, and in gene delivery applications.  相似文献   

8.
Crustacean waste is one of the most severe issues, posing significant environmental and health risks. This study aims to improve managing marine waste by isolating chitosan from Procambarus clarkii by devising a new methodology, incorporating technical steps, e.g., washing, decolorization and deacetylation under a reflexive condenser and dialysis purification. A comparison was made between the prepared P. clarkii chitosan and four types of shrimp chitosans: commercial, high, low, and nano. The obtained chitosan has a low molecular weight and viscosity compared to the commercial shrimp chitosan used in various applications. P. clarkii chitosan was prepared in high quality from a cheap source, as its color and quality were better than those of the commercial shrimp chitosan. The new methodology has successfully extracted chitosan from P. clarkii in a good quality and high purity, achieving 89% deacetylation, high solubility, high purity, and medium molecular weight. Analysis of the different chitosan samples with Fourier transform infrared spectroscopy (FTIR), atomic force microscopy, Raman spectrum referred indicated high similarity between the chitosan different types, regardless of its source. The 3D image of P. clarkii showed the distance between the highest and most profound points of extracted chitosan is 728.94 nm, revealing homogeneous, smooth surfaces, apparently free of pores and cracks. FTIR and Raman spectrum of P. clarkii indicated various functional groups, e.g., alcohol, amines, amides, and phenols. These active groups are responsible for about 60% of the antioxidant activity of that product. Evaluating the quality traits indicated the excellence of the chitosan prepared from P. clarkii, especially in color, viscosity, and antioxidant activity, nominating it for different food applications.  相似文献   

9.
《Process Biochemistry》2014,49(10):1682-1690
Double enzymes (alcalase and trypsin) were effectively immobilized in a composite carrier (calcium alginate–chitosan) to produce immobilized enzyme beads referred to as ATCC. The immobilization conditions for ATCC were optimized, and the immobilized enzyme beads were characterized. The optimal immobilization conditions were 2.5% of sodium alginate, 10:4 sodium alginate to the double enzymes, 3:7 chitosan solution to CaCl2 and 2.5 h immobilization time. The ATCC beads had greatly enhanced stability and good usability compared with the free form. The ATCC residual activity was retained at 88.9% of DH (degree of hydrolysis) after 35 days of storage, and 36.0% of residual activity was retained after three cycles of use. The beads showed a higher zein DH (65.8%) compared with a single enzyme immobilized in the calcium alginate beads (45.5%) or free enzyme (49.3%). The ATCC kinetic parameters Vmax and apparent Km were 32.3 mL/min and 456.62 g−1, respectively. Active corn peptides (CPs) with good antioxidant activity were obtained from zein in the ethanol phase. The ATCC might be valuable for preparing CPs and industrial applications.  相似文献   

10.
The effect of main beverage emulsion components namely Arabic gum (7–13% w/w), xanthan gum (0.1–0.3% w/w) and orange oil (6–10% w/w) on physicochemical properties of orange beverage emulsion was determined by using a three-factor central composite design (CCD). The reduced models with high R2 (?0.80) values and non significant (p > .05) lack of fit were significantly (p < .05) fitted to the experimental data, thus ensuring a satisfactory fitness of the regression models relating the response to independent variables. The quadratic effect of xanthan gum had a significant (p < .05) term in all reduced models. The independent variables had the most significant (p < .05) effect on turbidity loss rate and viscosity ratio. The overall optimum region resulted in the desirable orange beverage emulsion was predicted at a combined level of 13% (w/w) Arabic gum, 0.3% (w/w) xanthan gum and 10% (w/w) orange oil.  相似文献   

11.
The gum exudate polysaccharide from the trunk of nectarine (PPNEC) was compared with that of peach, being composed of Ara, Xyl, Man, Gal, and uronic acids in 37:13:2:42:6 molar ratio and had Mw 3.93 × 106 g mol?1, compared with 5.61 × 106 g mol?1 for peach gum polysaccharide. Methylation analysis of PPNEC indicated a highly branched structure with relatively high amounts of di- (16%) and tri-O-substituted (9%) Galp units and nonreducing end-units of Araf (26%) and Xylp (17%). Combination with 13C NMR data, showed the presence of α-l-Araf (nonreducing end, 3-O-, 5-O-, and 2,5-di-O-subst.), β-l-Arap (4-O- and 2,4-di-O-subst.), β-d-Galp (3-O-, 2,3-di-O-, 3,6-di-O-, and 3,4,6-tri-O-subst.), and α- and/or β-d-Xylp nonreducing end-units. A signal appeared from 4-O-Me-α-d-GlcpA units. PPNEC had structures similar to those of polysaccharide from peach tree gum, although in different proportions and with a lower Mw.  相似文献   

12.
This research reports the fabrication of silver nanoparticles (AgNPs) from endophytic fungus, Amesia atrobrunnea isolated from Ziziphus spina-christi (L.). Influencing factors for instance, thermal degree of incubation, media, pH, and silver nitrate (AgNO3) molarity were optimized. Then, the AgNPs were encapsulated with chitosan (Ch-AgNPs) under microwave heating at 650 W for 90 s. Characterization of nanoparticles was performed via UV–visible (UV–vis) spectrophotometer, Fourier-transform infrared spectrophotometer (FTIR), zeta potential using dynamic-light scattering (DLS), and field-emission-scanning electron microscope (FE-SEM). Anti-fungal activity of Ch-AgNPs at (50, 25, 12.5, 6.25 mg/L) was tested against Fusarium oxysporum, Curvularia lunata, and Aspergillus niger using the mycelial growth inhibition method (MGI). Results indicated that Czapek-dox broth (CDB) with 1 mM AgNO3, an acidic pH, and a temperature of 25–30 °C were the optimum for AgNPs synthesis. (UV–vis) showed the highest peak at 435 nm, whereas Ch-AgNPs showed one peak for AgNPs at 405 nm and another peak for chitosan at 230 nm. FTIR analysis confirmed that the capping agent chitosan was successfully incorporated and interacted with the AgNPs through amide functionalities. Z-potential was −19.7 mV for AgNPs and 38.9 mV for Ch-AgNPs, which confirmed the significant stability enhancement after capping. FES-SEM showed spherical AgNPs and a reduction in the nanoparticle size to 44.65 nm after capping with chitosan. The highest mycelial growth reduction using fabricated Ch-AgNPs was 93% for C. lunata followed by 77% for A. niger and 66% F. oxysporum at (50 mg/L). Biosynthesis of AgNPs using A. atrobrunnea cell-free extract was successful. Capping with chitosan exhibited antifungal activity against fungal pathogens.  相似文献   

13.
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and the yields were 30.0-32.2% with that of chitosan C120 being the highest. The degree of N-deacetylation of chitosans (83.3–93.3%) increased but the average molecular weight (483–526 kDa) decreased with the prolonged reaction time. Crab chitosans showed lower lightness and WI values than purified chitin, chitosans CC and CS but higher than crude chitin. With the prolonged reaction time, the nitrogen (8.9–9.5%), carbon (42.2–45.2%) and hydrogen contents (7.9–8.6%) in chitosans prepared consistently increased whereas N/C ratios remained the same (0.21). Crab chitosans prepared showed a melting endothermic peak at 152.3–159.2 °C. Three chitosans showed similar microfibrillar crystalline structure and two crystalline reflections at 2θ = 8.8–9.0° and 18.9–19.1°. Overall, the characteristics of three crab chitosans were unique and differed from those of chitosan CC and CS as evidenced by the element analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction patterns.  相似文献   

14.
《Process Biochemistry》2007,42(5):884-888
Polysaccharide obtained from Anacardium occidentale L. gum was used for trypsin entrapment using cellulose (gaze) as a support and this preparation was applied as cutaneous wound healing. Trypsin release in vitro and the influence of pH and temperature on activity, stability and storage time of entrapped enzyme were evaluated. The preparation showed that it was still capable to release enzyme even after 48 h. Entrapped enzyme presented an optimal pH and temperature of 8.6 and 55 °C, respectively. Also, it was stable at high temperature (45 °C for 60 min) and wide range of pH, retaining 80% of its initial activity when stored for 28 days at 25 °C. Histopathological analysis of mice skin wound healing under the entrapped trypsin preparation treatment showed an acceleration of fibroblast proliferation, neovascularization of granulation tissue and stimulating effect on the epithelium formation compared to the skin wound under the treatment using preparations without trypsin. These results demonstrate that the trypsin–polysaccharide–cellulose preparation could be used in cutaneous dressing applications for wound healing.  相似文献   

15.
Floating famotidine loaded mineral oil-entrapped emulsion gel (MOEG) beads were prepared by the emulsion–gelation method. Different polysaccharides (sodium alginate and pectin), oil concentrations (10%, 20% and 30% w/w) and drug:polymer (D:P) ratios (1:1, 2:1 and 3:1) were used and their influence on beads uniformity, drug entrapment efficiency (DEE) and in vitro drug release, was studied. The results clearly indicated that retardation of drug release for 4 h was achieved by the oil hydrophobic diffusional barrier, especially in the presence of the compact network of alginate beads. Calcium alginate beads containing 20% oil and 2:1 D:P ratio, showed an optimum DEE of 88.32%. When evaluated in vivo, this formula displayed superior antiulcer activity (>2) over drug suspension or marketed conventional tablets.  相似文献   

16.
《Biological Control》2013,67(3):166-172
Estimates of the dispersal range of a recently introduced biocontrol agent in its new environment are vital to understanding its relative searching capacity, and to foresee the maximum area that could be covered in a release event. In New Zealand, the solitary endoparasitoid Cotesia urabae Austin and Allen (Hymenoptera: Braconidae) was first released in January 2011 as a biological control agent for the gum leaf skeletoniser, Uraba lugens Walker (Lepidoptera: Nolidae). The objective of this study was to utilize an experimental approach to quantify the dispersal behavior of one generation of C. urabae. In our experiment, which used sentinel larvae as target hosts, parasitoids dispersed up to 20 m away from the release point but parasitism was highest within 5 m of the release site. A high level of parasitism was observed at the release tree (87.6%) which suggests that most of the females released may have stayed there. According to the dispersal model developed from the data collected, Cotesia would be able to disperse up to 53 m in one release event. In addition, significant differences were found between the different directions tested for dispersal, showing a clear downwind effect on dispersal suggesting that wind has a direct effect on the dispersal behavior of C. urabae in the field.  相似文献   

17.
Different crude microbial proteases were applied for chitin extraction from shrimp shells. A Box–Behnken design with three variables and three levels was applied in order to approach the prediction of optimal enzyme/substrate ratio, temperature and incubation time on the deproteinization degree with Bacillus mojavensis A21 crude protease. These optimal conditions were: an enzyme/substrate ratio of 7.75 U/mg, a temperature of 60 °C and an incubation time of 6 h allowing to predict 94 ± 4% deproteinization. Experimentally, in these optimized conditions, a deproteinization degree of 88 ± 5% was obtained in good agreement with the prediction and larger than values generally given in literature. The deproteinized shells were then demineralized to obtain chitin which was converted to chitosan by deacetylation and its antibacterial activity against different bacteria was investigated. Results showed that chitosan dissolved at 50 mg/ml markedly inhibited the growth of most Gram-negative and Gram-positive bacteria tested.  相似文献   

18.
This study was carried out to investigate whether zinc can potentiate renal toxicity using monolayer cultures of kidney proximal tubular cells and if so to establish the chemical species and the mechanism involved.MethodsZinc was prepared as the citrate complex at pH 7.4 in phosphate buffered saline. Monolayers of kidney proximal tubular cells under standard cell culture conditions were exposed to zinc concentrations of 0, 5 10, 20, 50 and 100 μmol/L. To assess cellular damage, thiazol blue (MTT) uptake, NAG and LDH release, DAPI staining and Tunel assay were used. Cytoprotective agents: trolox, cysteine, glutathione, ascorbic acid and sodium selenite were used to investigate if the damage was reversible.ResultsIncubation of kidney cells with zinc citrate showed a dose related reduction in cell viability (p < 0.005) associated with cellular uptake of zinc ions. After 24 h incubation with 100 μmol/L Zn citrate, NAG release was not significantly different compared to the control whereas LDH increased 3 fold. DAPI staining showed apoptotic bodies within the cells confirmed by Tunel assay using flow cytometry. Electron microscopy showed significant morphological changes including loss of brush border, vacuolated cytoplasm and condensed nuclei. Trolox almost completely (>85 ± 5%) and sodium selenite partially recovered (40 ± 4%) the viability of cells exposed to Zn but no protection was observed with other cytoprotectants, e.g. glutathione, cysteine or ascorbic acid.In conclusion zinc can induce damage to kidney cells by a mechanism dependent on zinc ions entering the cell, binding to the cell organelles and disrupting cellular processes rather than damage initiated by free radical and ROS production.  相似文献   

19.
The objective of this work was to investigate the possibility of chitosan bearing β-cyclodextrin (CDen-g-CS) nanocomplexes for controlled protein release. CDen-g-CS was synthesized by a one-step procedure with N-succinylated chitosan and mono(6-(2-aminoethyl)amino-6-deoxy)-β-cyclodextrin in the presence of the water-soluble carbodiimide. The amount of β-CD grafted was up to 62.1 wt%. In vitro cytotoxicity against NIH 3T3 cells showed that CDen-g-CS was not cytotoxic and no significant difference of cytotoxicity was found between CDen-g-CS groups. Self-assembled nanocomplexes between CDen-g-CS and insulin were in the size range of 190–328 nm, with positive electrical charge (+3.7 to +25.5 mV) and high loading efficiency (37.7%). Insulin release in vitro was affected by the medium pH and the composition of copolymer. These results demonstrated that CDen-g-CS copolymer was a new promising vehicle for controlled protein release.  相似文献   

20.
The method for the determination of caprylic acid and sodium caprylate from biological products was systematically validated using NEFA-C kit. The results obtained demonstrated that the kit method was simple, rapid, reliable, sensitive, reproducible and cost effective in comparison to the current methods i.e. colorimetric, High Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC) methods. The assay exhibited excellent linearity, accuracy, precision and robustness. Mean recoveries ranged between 95 and 101.3% (n = 6). The proposed method was linear over the concentration range of 0.05–10 mM of caprylate with values of coefficient of regression being >0.99. Method showed sensitivity of 0.05 mM (7.21 μg/ml for caprylic acid and 8.31 μg/ml for sodium caprylate). The % Relative standard Deviation (%RSD) for intra and interprecision studies was less than 5%. In conclusion the validated method was successfully used in monitoring of processed bulk and final products generated during production of biological products thus laying emphasis on strict control of release criteria for biological products fractionated using caprylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号