首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A glucuronan lyase (EC 4.2.2.14) was immobilized on a monolithic Convective Interaction Media (CIM((R))) disk. The immobilization yield was equal to 29% of the initial activity and 35% of the initial protein amount. Degradations of three glucuronans with various O-acetylation degrees were investigated and compared with degradations using free enzyme. The immobilized glucuronan lyase was inhibited by the O-acetylation degree like the free enzyme. (1)H NMR analyses were used to study the O-acetylation degree of oligoglucuronans and demonstrated that the average degrees of polymerization were inclusive between 4 and 13 after 24h of degradation. This first immobilization of a glucuronan lyase constitutes a new tool to produce oligoglucuronans.  相似文献   

2.
Maximal activity of the immobilized d-psicose 3-epimerase from Agrobacterium tumefaciens on Duolite A568 beads was achieved at pH 9.0 and 55 °C with borate, and at pH 8.5 and 50 °C without borate. The half-lives of the immobilized enzyme at 50 °C with and without borate were increased 4.2- and 128-fold compared to that of the free enzyme without borate, respectively. The immobilized enzyme with borate produced 441 g l?1 psicose from 700 g l?1 fructose at pH 9.0 and 55 °C, whereas 193 g l?1 psicose was produced without borate at pH 8.5 and 50 °C after 120 min in a batch reaction. The immobilized enzyme in a packed-bed bioreactor without borate was produced continuously 325 g l?1 psicose from 500 g l?1 fructose at a dilution rate of 1.62 h?1 over a 236 h period with productivity of 527 g l?1 h?1 while that without borate produced 146 g l?1 psicose at 4.15 h?1 over a 384-h period with productivity of 606 g l?1 h?1. The operational half-lives of the enzyme with and without borate in the bioreactor were 601 and 645 h, respectively. In the present study, psicose was produced stably with high productivity using the immobilized d-psicose 3-epimerase in the presence of borate.  相似文献   

3.
An industrial enzyme, alkaline serine endopeptidase, was immobilized on surface modified SBA-15 and MCF materials by amide bond formation using carbodiimide as a coupling agent. The specific activities of free enzyme and enzyme immobilized on SBA-15 and MCF were studied using casein (soluble milk protein) as a substrate. The highest activity of free enzyme was obtained at pH 9.5 while this value shifted to pH 10 for SBA-15 and MCF immobilized enzyme. The highest activity of immobilized enzymes was obtained at higher temperature (60 °C) than that of the free enzyme (55 °C). Kinetic parameters, Michaelis–Menten constant (Km) and maximum reaction velocity (Vmax), were calculated as Km = 13.375, 11.956, and 8.698 × 10?4 mg/ml and Vmax = 0.156, 0.163 and 0.17 × 10?3 U/mg for the free enzyme and enzyme immobilized on SBA-15 and MCF, respectively. The reusability of immobilized enzyme showed 80% of the activity retained even after 15 cycles. Large pore sized MCF immobilized enzyme was found to be more promising than the SBA-15 immobilized enzyme due to the availability of larger pores of MCF, which offer facile diffusion of substrate and product molecules.  相似文献   

4.
A non-modified and modified with NaOH and ethylenediamine ultrafiltration membranes prepared from AN copolymer have been used as carriers for the immobilization of horseradish peroxidase (HRP) enzyme. The amount of bound protein onto the membranes and the activity of the immobilized enzyme have been investigated as well as the pH and thermal optimum, and the thermal stability of the free and immobilized HRP. The experiments have proved that the modified membrane is a better support for the immobilization of HRP enzyme. The latter has shown a greater thermal stability than the free enzyme.A possible application has been studied for reducing phenol concentration in water solutions through oxidation of phenol by hydrogen peroxide, in the presence of free and immobilized HRP enzyme on modified AN copolymer membranes. A higher degree of the phenol oxidation has been observed in the presence of the immobilized enzyme. A total removal of phenol has been achieved in the presence of immobilized HRP at concentration of the hydrogen peroxide 0.5 mmol L?1 and concentration of the phenol in the model solutions within the interval 5–40 mg L?1. A high degree of phenol oxidation (95.4%) has been achieved in phenol solution with 100 mg L?1 concentration in the presence of hydrogen peroxide and immobilized HRP, which demonstrates the promising opportunity of using the enzyme for bioremediation of waste waters, containing phenol.The immobilized HRP has shown good operational stability. Deactivation of the immobilized enzyme to 50% of the initial activity has been observed after the 20th day of the enzyme operation.  相似文献   

5.
A simplified procedure for the preparation of immobilized beta-amylase using non-purified extract from fresh sweet potato tubers is established in this paper, using differently activated agarose supports. Beta-amylase glutaraldehyde derivative was the preparation with best features, presenting improved temperature and pH stability and activity. The possibility of reusing the amylase was also shown, when this immobilized enzyme was fully active for five cycles of use. However, immobilization decreased enzyme activity to around 15%. This seems to be mainly due to diffusion limitations of the starch inside the pores of the biocatalyst particles. A fifteen-fold increase in the Km was noticed, while the decrease of Vmax was only 30% (10.1 U mg?1 protein and 7.03 U mg?1 protein for free and immobilized preparations, respectively).  相似文献   

6.
Immobilization of Saccharomyces cerevisiae lipase by physical adsorption on Mg–Al hydrotalcite with a Mg/Al molar ratio of 4.0 led to a markedly improved performance of the enzyme. The immobilized lipase retained activity over wider ranges of temperature and pH than those of the free lipase. The immobilized lipase retained more than 95% relative activity at 50 °C, while the free lipase retained about 88%. The kinetic constants of the immobilized and free lipases were also determined. The apparent activation energies (Ea) of the free and immobilized lipases were estimated to be 6.96 and 2.42 kJ mol?1, while the apparent inactivation energies (Ed) of free and immobilized lipases were 6.51 and 6.27 kJ mol?1, respectively. So the stability of the immobilized lipase was higher than that of free lipase. The water content of the oil must be kept below 2.0 wt% and free fatty acid content of the oil must be kept below 3.5 mg KOH g [oil]?1 in order to get the best conversion. This immobilization method was found to be satisfactory to produce a stable and functioning biocatalyst which could maintain high reactivity for repeating 10 batches with ester conversion above 81.3%.  相似文献   

7.
A bioreactor packed with chitosan immobilized sulfide-oxidase from Streptomyces species LD048 was developed to treat a liquid stream of sulfide. The inoculation system was composed of glass with a 0.7 L working volume and enzyme activity of 2 mmol S g?1 carrier. The sulfide removal efficiency was almost 100% when the volumetric loading was increased up to 3.9 mmol S L?1 h?1 at a space velocity of 18 h?1. The maximal elimination capacity was 22.1 mmol S L?1 h?1 with a space velocity of 72 h?1. When the aeration was increased from 0.05 to 0.1 L min?1, the average removal efficiency improved from 81% to 94%. A removal efficiency of 90% was obtained after 15 days of operation with a load rate of 8.9 mmol S L?1 h?1 and a space velocity of 14.28 h?1. An operational equation based on the ideal plug flow bioreactor and the Michaelis–Menten model predicted the performance of this bioreactor.  相似文献   

8.
Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilized covalently on the mesostructured siliceous cellular foams (MCFs) functionalised using various organosilanes with amine and glycidyl groups. The experiments indicated that laccase bound via glutaraldehyde to MCFs modified using 2-aminoethyl-3-aminopropyltrimethoxysilane remains very active. In the best biocatalyst activity was about 42,700 U mL?1 carrier (66,800 U mg?1 bound protein), and hence significantly higher than ever reported before. Optimisation of the immobilization procedure with respect to protein concentration, pH of coupling mixture and the enzyme purity afforded the biocatalyst with activity of about 90,980 U mL?1. For the best preparation, thermal- and pH-stability, and activity profiles were determined. Experiments carried out in a batch reactor showed that kcat/Km for immobilized enzyme (0.88 min?1 μM?1) was acceptable lower than the value obtained for the native enzyme (2.19 min?1 μM?1). Finally, potentials of the catalysts were tested in the decolourisation of indigo carmine without redox-mediators. Seven consecutive runs with the catalysts separated by microfiltration proved that adsorption of the dye onto the carrier and enzymatic oxidation contribute to the efficient decolourisation without loss of immobilized enzyme activity.  相似文献   

9.
Bioimprinting is a promising, though relatively unexplored, approach to improving the performance of enzymes. In this study, bioimprinting with substrate analogues of fatty acids was systematically conducted to improve the esterification activity of Burkholderia cepacia lipase that had undergone a sol–gel immobilization procedure with methyltrimethoxysilane (MTMS) and tetramethoxysilane (TMOS) as the precursors. The specific activity of the bioimprinted lipases was 3682.0 μmol h?1 mg protein, which was a 47.9- and 2.5-fold increase over the free and non-imprinted immobilized lipases, respectively. Compared to the free and non-imprinted immobilized lipases, bioimprinted lipases exhibited better thermal stability, and their activity did not change after being incubated at 60 °C for 12 h. Bioimprinted lipases were more easily affected by alcohol than the non-imprinted ones, whose specific activity could be markedly enhanced by ethanol, isopropanol and n-butanol by factors of 1.23-, 1.28- and 1.12-fold, respectively. The reasons for the improvement of imprinted enzyme activity are also discussed based on the surface structure, specific surface area and average pore diameter of the silane particles.  相似文献   

10.
《Process Biochemistry》2014,49(4):637-646
In this study, Purolite® A109, polystyrenic macroporous resin, was used as immobilization support due to its good mechanical properties and high particle diameter (400 μm), which enables efficient application in enzyme reactors due to lower pressure drops. The surface of support had been modified with epichlorhydrine and was tested in lipase immobilization. Optimized procedure for support modification proved to be more efficient than conventional procedure for hydroxy groups (at 22 °C for 18 h), since duration of procedure was shortened to 40 min by performing modification at 52 °C resulting with almost doubled concentration of epoxy groups (563 μmol g−1). Lipase immobilized on epoxy-modified support showed significantly improved thermal stability comparing to both, free form and commercial immobilized preparation (Novozym® 435). The highest activity (47.5 IU g−1) and thermal stability (2.5 times higher half-life than at low ionic strength) were obtained with lipase immobilized in high ionic strength. Thermal stability of immobilized lipase was further improved by blocking unreacted epoxy groups on supports surface with amino acids. The most efficient was treatment with phenylalanine, since in such a way blocked immobilized enzyme retained 65% of initial activity after 8 h incubation at 65 °C, while non-blocked derivative retained 12%.  相似文献   

11.
Microbial nuclease P1 from Penicllium citrinum was immobilized on macroporous absorbent resins: strong polar poly (styrene-co-DVB) resin (SPPSD), polymethacrylic ester resin and poly (styrene-co-DVB)-Br resin. The results showed that SPPSD was the best carrier. Three methods of glutaraldehyde cross-linking were used and simultaneous immobilization and cross-linking (CIS) was demonstrated to be the best method. The functional properties of immobilized nuclease P1 were studied and compared to those of the free enzyme. The highest enzyme activities of free and immobilized nuclease P1 were obtained in 0.2 M acetate buffer at pH 4.5 and a temperature of 70 °C. An increase in Km (from 3.165 to 18.125 mg mL?1) and a decrease in Vmax (from 1667.18 to 443.95 U min?1 mL?1) were recorded after immobilization. SPPSD-glutaraldehyde-nuclease P1 exhibited better thermal stability than the free enzyme. The apparent activation energy (Ea) of the free and immobilized nuclease P1 was 137.04 kJ mol?1 and 98.43 kJ mol?1, respectively, implying that the catalytic efficiency of the immobilized enzyme was restricted by mass-transfer rather than kinetic limit.  相似文献   

12.
《Process Biochemistry》2007,42(6):934-942
Pseudomonas luteola was immobilized by entrapment in alginate–silicate sol–gel beads for decolorization of the azo dye, Reactive Red 22. The influences of biomass loading and operating conditions on specific decolorization rate and dye removal efficiency were studied in details. The immobilized cells were found to be less sensitive to changes in agitation rates (dissolved oxygen levels) and pH values. Michaelis–Menten kinetics could be used to describe the decolorization kinetics with the kinetic parameters being 36.5 mg g−1 h−1, 300.1 mg l−1 and 18.2 mg g−1 h−1, 449.8 mg l−1 for free and immobilized cells, respectively. After five repeated batch cycles, the decolorization rate of the free cells decreased by nearly 54%, while immobilized cells still retained 82% of their original activity. The immobilized cells exhibited better thermal stability during storage and reaction when compared with free cells. From SEM observation, a dense silicate gel layer was found to surround the macroporous alginate–silicate core, which resulted in much improved mechanical stability over that of alginate beads when tested under shaking conditions. Alginate–silicate matrices appeared to be the best matrix for immobilization of P. luteola in decolorization of Reactive Red 22 when compared with previous results using synthetic or natural polymer matrices.  相似文献   

13.
Recently, a bubbleless membrane bioreactor (BMBR) has been successfully developed for biosurfactant production by Bacillus subtilis [1]. In this study, for the first time, continuous culture were carried out for the production of surfactin in a BMBR, both with or without a coupled microfiltration membrane. Results from continuous culture showed that a significant part of biomass was immobilized onto the air/liquid membrane contactor. Immobilized biomass activity onto the air/liquid membrane contactor was monitored using a respirometric analysis. Kinetics of growth, surfactin and primary metabolites production were investigated. Planktonic biomass, immobilized biomass and surfactin production and productivity obtained in batch culture (3 L) of 1.5 days of culture were 4.5 g DW, 1.3 g DW, 1.8 g and 17.4 mg L?1 h?1, respectively. In continuous culture without total cell recycling (TCR), the planktonic biomass was leached, but immobilized biomass reached a steady state at an estimated 6.6 g DW. 11.5 g of surfactin was produced after 3 days of culture, this gave an average surfactin productivity of 54.7 mg L?1 h?1 for the continuous culture, which presented a surfactin productivity of 30 mg L?1 h?1 at the steady state. TCR was then investigated for the continuous production, extraction and purification of surfactin using a coupled ultrafiltration step. In continuous culture with TCR at a dilution rate of 0.1 h?1, planktonic biomass, immobilized biomass, surfactin production and productivity reached 7.5 g DW, 5.5 g DW, 7.1 g and 41.6 mg L?1 h?1 respectively, after 2 days of culture. After this time, biomass and surfactin productions stopped. Increasing dilution rate to 0.2 h?1 led to the resumption of biomass and surfactin production and these values reached 11.1 g DW, 10.5 g DW, 7.9 g and 110.1 mg L?1 h?1, respectively, after 3 days of culture. This study has therefore shown that with this new integrated bioprocess, it was possible to continuously extract and purify several grams of biosurfactant, with purity up to 95%.  相似文献   

14.
The objective of the present study was to isolate halotolerant bacteria from the sediment sample collected from Marakanam Solar Salterns, Tamil Nadu, India using NaCl supplemented media and screened for amylase production. Among the 22 isolates recovered, two strains that had immense potential were selected for amylase production and designated as P1 and P2. The phylogenetic analysis revealed that P1 and P2 have highest homology with Pontibacillus chungwhensis (99%) and Bacillus barbaricus (100%). Their amylase activity was optimized to obtain high yield under various temperature, pH and NaCl concentration. P1 and P2 strain showed respective, amylase activity maximum at 35 °C and 40 °C; pH 7.0 and 8.0; 1.5 M and 1.0 M NaCl concentration. Further under optimized conditions, the amylase activity of P1 strain (49.6 U mL?1) was higher than P2 strain. Therefore, the amylase enzyme isolated from P. chungwhensis P1 was immobilized in sodium alginate beads. Compared to the free enzyme form (49.6 U mL?1), the immobilized enzyme showed higher amylase activity as 90.3 U mL?1. The enzyme was further purified partially and the molecular mass was determined as 40 kDa by SDS–PAGE. Thus, high activity of amylase even under increased NaCl concentration would render immense benefits in food processing industries.  相似文献   

15.
Maltase from Bacillus licheniformis KIBGE-IB4 was immobilized within calcium alginate beads using entrapment technique. Immobilized maltase showed maximum immobilization yield with 4% sodium alginate and 0.2 M calcium chloride within 90.0 min of curing time. Entrapment increases the enzyme–substrate reaction time and temperature from 5.0 to 10.0 min and 45 °C to 50 °C, respectively as compared to its free counterpart. However, pH optima remained same for maltose hydrolysis. Diffusional limitation of substrate (maltose) caused a declined in Vmax of immobilized enzyme from 8411.0 to 4919.0 U ml?1 min?1 whereas, Km apparently increased from 1.71 to 3.17 mM ml?1. Immobilization also increased the stability of free maltase against a broad temperature range and enzyme retained 45% and 32% activity at 55 °C and 60 °C, respectively after 90.0 min. Immobilized enzyme also exhibited recycling efficiency more than six cycles and retained 17% of its initial activity even after 6th cycles. Immobilized enzyme showed relatively better storage stability at 4 °C and 30 °C after 60.0 days as compared to free enzyme.  相似文献   

16.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

17.
Nitrate reductase (NR) is employed for fabrication of nitrate sensing devices in which the enzyme in immobilized form is used to catalyze the conversion of nitrate to nitrite in the presence of a suitable cofactor. So far, instability of immobilized NR due to the use of inappropriate immobilization matrices has limited the practical applications of these devices. Present study is an attempt to improve the kinetic properties and stability of NR using nanoscale iron oxide (nFe3O4) and zinc oxide (nZnO) particles. The desired nanoparticles were synthesized, surface functionalized, characterized and affixed onto the epoxy resin to yield two nanocomposite supports (epoxy/nFe3O4 and epoxy/nZnO) for immobilizing NR. Epoxy/nFe3O4 and epoxy/nZnO support could load as much as 35.8 ± 0.01 and 33.20 ± 0.01 μg/cm2 of NR with retention of about 93.72 ± 0.50 and 84.81 ± 0.80% of its initial activity respectively. Changes in surface morphology and chemical bonding structure of both the nanocomposite supports after addition of NR were confirmed by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Optimum working conditions of pH, temperature and substrate concentration were ascertained for free as well as immobilized NR preparations. Further, storage stability at 4 °C and thermal stability between 25–50 °C were determined for all the NR preparations. Analytical applications of immobilized NR for determination of soil and water nitrates along with reusability data has been included to make sure the usefulness of the procedure.  相似文献   

18.
The hydrolysis of phenolic compounds using an immobilized and highly active and stable derivative of laccase from Trametes versicolor is presented. The enzyme was immobilized on aldehyde supports. For this, the enzyme was enriched in amino groups by chemical modification of its carboxyl groups. The aminated enzyme was immobilized with a high recovered activity (over 60%). Aldehyde derivatives were more stable than soluble or aminated-soluble enzyme and the reference derivatives after incubation in different inactivating conditions (high temperatures, different pH values or presence of organic cosolvents). The most stable derivative was obtained immobilizing the chemically aminated enzyme at pH 10 on aldehyde supports with a stabilization factor approximately 280 fold after incubation at pH 7 and 55 °C. In addition, it was possible to prepare immobilized derivatives with a maximal enzyme loading of 60 mg g?1 of support. This derivative could be reused for 10 reaction cycles with negligible lost of activity.  相似文献   

19.
Laccase enzyme (L) from Trametes versicolor was entrapped in three hydrogel structures namely poly(acrylamide-N-isopropylacrylamide), P(AAm-NIPA), and semi-interpenetrating networks of poly(acrylamide)/alginate, P(AAm)/Alg, and poly(acrylamide-N-isopropylacrylamide)/alginate, P(AAm-NIPA)/Alg. The optimum temperatures for free and all immobilized systems were found to be 40 °C. For free and immobilized laccase systems of P(AAm-NIPA)-L, P(AAm)/Alg-L and P(AAm-NIPA)/Alg-L, Km values were found to be 6.7 × 10?3, 8.8 × 10?2, 5.5 × 10?2 and 1.8 × 10?2 mM; Vmax values were calculated as 1.8 × 10?3, 2.5 × 10?2, 1.5 × 10?2 and 6.1 × 10?3 mM min?1, respectively. For free and the same immobilized systems, the enzymes retained 42%, 91%, 79% and 86% of their initial activities at the end of 56 days of storage. After using the mentioned immobilized systems repeatedly 10 times, they retained 77%, 71% and 84% of their original activities, respectively. For free and the same immobilized systems, decolorization of Acid Orange 52 (AO52) in 6 h were found to be 63%, 50%, 48% and 66%, respectively. Addition of 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid), ABTS, into the assay medium increased these values up to 73%, 73%, 74% and 75%, respectively.  相似文献   

20.
Carbonic anhydrase (CA) catalyzes the reversible reaction of hydration of CO2 to bicarbonate and the dehydration of bicarbonate back to CO2. Sequestration of CO2 from industrial processes or breathing air may require a large amount of highly active and stable CA. Therefore, the objectives of the present study were to purify large amounts of CA from a cheap and easily accessible source of the enzyme and to characterize the enzymatic and kinetic properties of soluble and immobilized enzyme. We recovered 80% of pure enzyme with a specific activity of 4870 EU/mg protein in a single step using sheep blood lysates from slaughter house waste products and CA specific inhibitor affinity chromatography. Since affinity pure CA showed both anhydrase and esterase activities, we measured the esterase activities for enzymology. The Michaelis–Menten constant, KM, pH optimum, activation energy, and thermal stability of soluble enzymes were 8 × 10?2 M, 7.3 pH, 7.3 kcal/mol and 70 °C, respectively.The immobilization of the enzyme to Affigel-10 was very efficient and 83% of purified enzyme was immobilized. The immobilized enzyme showed a KM of 5 × 10?2 M and activation energy of 8.9 kcal/mol, suggesting a better preference of substrate for immobilized enzyme in comparison to soluble enzyme. In contrast to soluble enzyme, immobilized enzyme showed relatively higher activity at pH 6–8. From these results, we concluded that a shift in pH profile toward acidic pH is due to modification of lysine residues involved in the immobilization process. The immobilized enzyme was stable at higher temperatures and showed highest activity at 80 °C. The activity of immobilized enzyme in a flow reactor at 0.5–2.2 ml/min flow rate was unaffected. Collectively, results from the present study suggested the application of blood lysate waste from animal slaughterhouses for purification of homogeneous enzyme for CO2 capture in a flow reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号