首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell surface hemichannels (HCs) composed of different connexin (Cx) types are present in diverse cells and their possible role on FGF-1-induced cellular responses remains unknown. Here, we show that FGF-1 transiently (4-14 h, maximal at 7 h) increases the membrane permeability through HCs in HeLa cells expressing Cx43 or Cx45 under physiological extracellular Ca(2+)/Mg(2+) concentrations. The effect does not occur in HeLa cells expressing HCs constituted of Cx26 or Cx43 with its C-terminus truncated at aa 257, or in parental nontransfected HeLa cells. The increase in membrane permeability is associated with a rise in HC levels at the cell surface and a proportional increase in HC unitary events. The response requires an early intracellular free Ca(2+) concentration increase, activation of a p38 MAP kinase-dependent pathway, and a regulatory site of Cx subunit C-terminus. The FGF-1-induced rise in membrane permeability is also associated with a late increase in intracellular free Ca(2+) concentration, suggesting that responsive HCs allow Ca(2+) influx. The cell density of Cx26 and Cx43 HeLa transfectants cultured in serum-free medium was differentially affected by FGF-1. Thus, the FGF-1-induced cell permeabilization and derived consequences depend on the Cx composition of HCs.  相似文献   

2.
3.
Rasola A  Bernardi P 《Cell calcium》2011,50(3):222-233
A variety of stimuli utilize an increase of cytosolic free Ca2+ concentration as a second messenger to transmit signals, through Ca2+ release from the endoplasmic reticulum or opening of plasma membrane Ca2+ channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca2+, thus shaping the return of cytosolic Ca2+ to resting levels. The rise of mitochondrial matrix free Ca2+ concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca2+ increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca2+ release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca2+, termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca2+ can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca2+ concentration, their interplay with Ca2+ signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.  相似文献   

4.
In the light of previous reports suggesting a common abnormality of Ca handling in most tissues of hypertensive humans and rats, we applied a novel technique using the fluorescent probe Quin 2 for measurement of cytosolic free Ca2+ in lymphocytes of spontaneously hypertensive rats (SHR). (Ca2+)i is increased in SHR (122.1 +/- 7.4 nM) versus normotensive Wistar-Kyoto (WKY) control rats (81.1 +/- 6.3 nM) Membrane exchange, as challenged by varying the extracellular Ca concentration over a 10(5)-fold range proved to be relatively unimportant in regulating (Ca2+)i and did not significantly affect the difference between SHR and WKY. Catecholamines and ouabain had no appreciable effect on (Ca2+)i. The mechanisms of increased (Ca2+)i in SHR lymphocytes remain to be fully elucidated.  相似文献   

5.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

6.
The relationship between mitochondrial Ca2 transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2 transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mClCR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mClCR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mClCR and PTP opening. mClCR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2 transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

7.
Mitochondrial Ca(2+) uptake is usually thought to occur only when intracellular Ca(2+) concentration ([Ca(2+)](i)) is high. We investigated whether mitochondrial Ca(2+) removal participates in shaping [Ca(2+)](i) signals in arterial smooth muscle over a low [Ca(2+)](i) range. [Ca(2+)](i) was measured using fura 2-loaded, voltage-clamped cells from rat femoral arteries. Both diazoxide and carbonyl cyanide m-chlorophenylhydrazone (CCCP) depolarized the mitochondria. Diazoxide application increased resting [Ca(2+)](i), suggesting that Ca(2+) is sequestered in mitochondria. Over a low [Ca(2+)](i) range, diazoxide and CCCP slowed Ca(2+) removal rate, determined after a brief depolarization. When [Ca(2+)](i) was measured during sustained depolarization to -30 mV, CCCP application increased [Ca(2+)](i). When Ca(2+) transients were repeatedly evoked by caffeine applications, CCCP application elevated resting [Ca(2+)](i). Caffeine-induced Ca(2+) transients were compared before and after CCCP application using the half decay time, or time required to reduce increase in [Ca(2+)](i) by 50% (t((1/2))). CCCP treatment significantly increased t((1/2)). These results suggest that Ca(2+) removal to mitochondria in arterial smooth muscle cells may be important at a low [Ca(2+)](i).  相似文献   

8.
Ca2+i versus [Ca2+]i.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

9.
Carnitine is required for the transport of activated long chain fatty acids through the mitochondrial inner membrane. We measured the intracellular free calcium concentration [( Ca2+]i) by means of a calcium selective microelectrode in skeletal muscle biopsies obtained from nine patients in which myopathic carnitine deficiency (MCD) was diagnosed, and from six subjects with no evidence of neuromuscular disease. Intact intercostal muscle bundles were dissected and then split for electron microscopic studies and electrophysiological measurements. The [Ca2+]i in muscle fibers from MCD patients was 0.46 +/- 0.02 mumol.l-1 (mean +/- SEM) and 0.10 +/- 0.01 mumol.l-1 in control subjects. At the electron microscopic level, the predominant abnormality was the presence of lipid vacuoles between the myofibrils. These results show that in patients with myopathic carnitine deficiency there is a significant increase in the resting myoplasmic calcium concentration which might be related to a malfunction of some mechanisms responsible for the homeostasis of intracellular calcium.  相似文献   

10.
Isopeptides of the newly discovered peptide family, endothelins (ET), caused a concentration-dependent increase in intracellular free [Ca2+] ([Ca2+]i) in human glomerular mesangial cells. ET isopeptides and sarafotoxin S6b caused transient and sustained [Ca2+]i waveforms which resulted from mobilization of intracellular Ca2+ stores and from Ca2+ influx through a dihydropyridine-insensitive Ca2+ channel. Ca2+ signaling evoked by ET isopeptides underwent a marked adaptive, desensitization response. Although activation of protein kinase C attenuated ET-induced Ca2+ signaling, desensitization by ET isopeptides was independent of protein kinase C. High concentrations of ET-1 and ET-2 also caused oscillations of [Ca2+]i that partially depended on extracellular Ca2+. These results suggest that an increase in [Ca2+]i constitutes a common pathway of signal transduction for the ET peptide family.  相似文献   

11.
12.
Growth factors stimulate DNA synthesis of neoplastic cells but not of non-neoplastic cells in suspension cultures. Similarly, growth ceases in dense monolayers of non-neoplastic cells, while crowded neoplastic cells continue to grow. The mechanism of these important phenotypic changes is unknown; the block in growth stimulation could occur in early events of signal transduction at the plasma membrane or in a late step in the final steps of gene activation and induction of DNA synthesis. One particular early intracellular event, [Ca2+]i increases, is in fact necessary for the induction of DNA synthesis in attached non-neoplastic Balb/c 3T3 cells stimulated by platelet-derived growth factor (PDGF). We therefore used digital image analysis of intracellular Fura-2 fluorescence to determine whether PDGF can stimulate [Ca2+]i transients in suspension or in dense monolayer cultures of Balb/c 3T3 cells. In dense cells (greater than 8 x 10(4) cells/cm2) the basal [Ca2+]i and [Ca2+]i response to PDGF stimulation were both lower than those in sparser, more spread cells. PDGF also did not release internal stores of Ca2+ or produce Ca2+ influx in completely suspended cells. Remarkably, attachment alone, with minimal cell spreading, was enough to reinitiate the entire early signalling mechanism stimulated by PDGF. Thus, a block in PDGF-induced [Ca2+]i increases may contribute to the inability of PDGF to stimulate DNA synthesis in suspended non-neoplastic cells. This early block in signal transduction must be abrogated in neoplastic cells growing in suspension and dense monolayer cultures.  相似文献   

13.
14.
The insulin-stimulated cation channel previously identified in patch-clamped muscle preparations is here shown to be responsible for bulk Na+ entry into the cell. The mainly Na+ current of the channel was shown to be accompanied by an inhibitory Ca2+ component responsible for oscillations. Here, using quantitative fluorescence imaging of Fura-2- and SBFI-loaded soleus muscle, we measure changes in [Na+]i and [Ca2+]i related to channel function. Insulin increased [Na+]i and [Ca+]i in a transient spike of < 1-min duration. There was a momentary dip in [Na+]i related to inhibition of the channel by the Ca2+ spike, and changes in external Ca2+ were shown to alter [Na+]i via the cation channel, all effects being blocked by the specific channel inhibitor mu-conotoxin, but not by tetrodotoxin. The [Ca2+]i spike could also be induced by 8-bromo cyclic-guanosine 5'-monophosphate, an analogue of the channel-activator cyclic-guanosine 5'-monophosphate (cGMP). In addition it was noted that insulin reduced the [Ca2+]i rise upon subsequent muscle depolarization by a factor of 3.5. Insulin could be substituted with phorbol ester for the same effect and HA1004, a protein kinase inhibitor, blocked the reduction.  相似文献   

15.
Han R  Grounds MD  Bakker AJ 《Cell calcium》2006,40(3):299-307
The hypothesis that intracellular Ca(2+) is elevated in dystrophic (mdx) skeletal muscle due to increased Ca(2+) influx is controversial. As the sub-sarcolemmal Ca(2+) ([Ca(2+)](mem)) should be even higher than the global cytosolic Ca(2+) in the presence of increased Ca(2+) influx, we investigated [Ca(2+)](mem) levels in collagenase-isolated adult flexor digitorum brevis (FDB) myofibres and myotubes of mdx and normal mice with the near-membrane Ca(2+) indicator FFP-18. Confocal imaging showed strong localization of FFP-18 to the sarcolemma only. No significant difference in [Ca(2+)](mem) was found in FDB myofibres of normal (77.3+/-3.8 nM, n=68) and mdx (79.3+/-5.6 nM, n=21, p=0.89) mice using FFP-18. Increasing external Ca(2+) to 18 mM did not significantly affect [Ca(2+)](mem) in either the normal or mdx myofibres. In the myotubes, the FFP-18 was non-selectively incorporated, distributing throughout the cytoplasm, and FFP-18-derived [Ca(2+)] values were similar to values obtained with Fura-2. Nevertheless, in the mdx myotubes, the [Ca(2+)] measured with FFP-18 increased linearly to a level approximately 2.75 times that of controls as the time of culture was prolonged. In older mdx myotubes (>or=8 days in culture), 18 mM extracellular Ca(2+) increased the steady state cytosolic [Ca(2+)] to approximately 22 times greater level than controls. This study suggests that the sub-sarcolemmal Ca(2+) homeostasis is well maintained in isolated adult mdx myofibers and also further supports the hypothesis that cytosolic Ca(2+) handling is compromised in mdx myotubes.  相似文献   

16.
Mitochondrial permeability transition and oxidative stress   总被引:28,自引:0,他引:28  
Mitochondrial permeability transition (MPT) is a non-selective inner membrane permeabilization that may precede necrotic and apoptotic cell death. Although this process has a specific inhibitor, cyclosporin A, little is known about the nature of the proteinaceous pore that results in MPT. Here, we review data indicating that MPT is not a consequence of the opening of a pre-formed pore, but the consequence of oxidative damage to pre-existing membrane proteins.  相似文献   

17.
胞质[Ca2 ]i震荡的动力学变化在哺乳动物早期胚胎发育中发挥重要作用。卵母细胞的成熟伴随间断的、快速的[Ca2 ]i震荡的时空表达;在受精过程中精子因子诱导的反复[Ca2 ]i震荡的振幅和持续时间是卵细胞最有效的激活信号,这种信号形成自然连续的受精[Ca2 ]i波,并以长时持续[Ca2 ]i震荡形式在受精卵空间传递并持续数小时,直至受精完成;受精卵内源性的Ca2 释放所引起的[Ca2 ]i震荡形成第一次卵裂信号,启动早期胚胎的发育。精子PLCζ和cPKCs是形成受精卵[Ca2 ]波、[Ca2 ]震荡的重要因素。  相似文献   

18.
Oocyte is arrested at metaphase of the second meiosis until fertilization switching on [Ca2+]i oscillations. Oocyte activation inefficiency is the most challenging problem for failed fertilization and embryonic development. Mitochondrial function and intracellular [Ca2+]i oscillations are two critical factors for the oocyte’s developmental potential. We aimed to understand the possible correlation between mitochondrial function and [Ca2+]i oscillations in oocytes. To this end, mitochondrial uncoupler CCCP which damages mitochondrial function and two small molecule mitochondrial agonists, L-carnitine (LC) and BGP-15, were used to examine the regulation of [Ca2+]i by mitochondrial functions. With increasing CCCP concentrations, [Ca2+]i oscillations were gradually diminished and high concentrations of CCCP led to oocyte death. LC enhanced mitochondrial membrane potential and [Ca2+]i oscillations and even improved the damage induced by CCCP, however, BGP-15 had no beneficial effect on oocyte activation. We have found that mitochondrial function plays a vital role in the generation of [Ca2+]i oscillations in oocytes, and thus mitochondria may interact with the ER to generate [Ca2+]i oscillations during oocyte activation. Improvement of mitochondrial functions with small molecules can be expected to improve oocyte activation and embryonic development in infertile patients without invasive micromanipulation.  相似文献   

19.
F Foldes 《Life sciences》1981,28(14):1585-1590
Since 1932 invitro physiological and pharmacological studies on neuromuscular and other types of synaptic transmission have been carried out usually in Krebs' of similar balanced electrolyte solutions. It has been disregarded, however, that although the total calcium [Cat] (2.5 mM) and [Mgt] (1.2 mM), are about the same in human plasma and in Krebs' solution, the physiologically important [Ca2+] and [Mg2+], primarily because of binding to plasma proteins, are much lower in plasma (1.1 and 0.6 mM) than in Krebs' solution (2.0 and 1.1 mM). We observed that in a modified Krebs' solution in which the [Cat] and [Mgt] are 1.4 and 0.9 mM respectively and the [Ca2+] and [Mg2+] are about the same as in human plasma, the Ca2+ dependent volley output of acetylcholine is less and the inhibition of the electrically induced isometric twitch tension of the rat phrenic nerve - hemidiaphragm preparation by nondepolarizing neuromuscular blocking agents and certain antibiotics is greater than in conventional Krebs' solution, in which the [Ca2+] and [Mg2+] are higher than invivo. Similarly, during electrical field stimulation of the guinea-pig myenteric plexus - longitudinal muscle preparation volley output of acetylcholine is lower and the inhibition of the isometric contraction of the muscle by normophine is greater in modified than in conventional Krebs' solution. It is suggested that for greater relevance to invivo conditions the [Ca2+] and [Mg2+] of balanced electrolyte solutions used in in vitro experiments on synaptic transmission should be the same as in human plasma or in the plasma of the species of the experimental animal.  相似文献   

20.
Changes in mitochondrial integrity, reactive oxygen species release and Ca2+ handling are proposed to be involved in the pathogenesis of many neurological disorders including methylmalonic acidaemia and Huntington's disease, which exhibit partial mitochondrial respiratory inhibition. In this report, we studied the mechanisms by which the respiratory chain complex II inhibitors malonate, methylmalonate and 3-nitropropionate affect rat brain mitochondrial function and neuronal survival. All three compounds, at concentrations which inhibit respiration by 50%, induced mitochondrial inner membrane permeabilization when in the presence of micromolar Ca2+ concentrations. ADP, cyclosporin A and catalase prevented or delayed this effect, indicating it is mediated by reactive oxygen species and mitochondrial permeability transition (PT). PT induced by malonate was also present in mitochondria isolated from liver and kidney, but required more significant respiratory inhibition. In brain, PT promoted by complex II inhibition was stimulated by increasing Ca2+ cycling and absent when mitochondria were pre-loaded with Ca2+ or when Ca2+ uptake was prevented. In addition to isolated mitochondria, we determined the effect of methylmalonate on cultured PC12 cells and freshly prepared rat brain slices. Methylmalonate promoted cell death in striatal slices and PC12 cells, in a manner attenuated by cyclosporin A and bongkrekate, and unrelated to impairment of energy metabolism. We propose that under conditions in which mitochondrial complex II is partially inhibited in the CNS, neuronal cell death involves the induction of PT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号