首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitosan cross-linked cellulose fibers were prepared using non-toxic procedures in order to confer antimicrobial properties to cellulose fibers. Citric acid was used as the cross-linker and NaH2PO4 as catalyst in previously UV-irradiated cellulose fibers. Further heat dried-cure process and washing with detergent, water and acetic acid (0.1 M) gave a maximum incorporation of chitosan of 27 mg per gram of functionalized textile. The thermogravimetric analysis of the material with the highest chitosan content showed an increased thermal stability compared to cellulose and chitosan. The UV-irradiation induced morphological changes, such as less entangled cellulose fibers, as observed by scanning electron microscopy, which was prompted to enhance the chitosan incorporation. The biomass and spore germination percentage of Penicillium chrysogenum and colony forming units per millilitre for Escherichia coli decreased significantly on the composed materials as compared to raw cellulose fiber and it was similar to that obtained with a commercial antimicrobial cellulose fiber.  相似文献   

2.
A kind of antimicrobial fibers, a composite of Chitosan-Dialdehyde Cellulose (C-DAC) fibers, was prepared by using commercially elemental chlorine-free (ECF) bleached kraft softwood cellulose fibers oxidized by periodate and then further grafted by chitosan with different molecular weights. The characteristics of the C-DAC fibers and physical properties as well as antimicrobial activities of the handsheet made of C-DAC fibers were measured. The results show that the dry and rewet tensile indices, antimicrobial activity against Staphylococcus aureus and Escherichia coli, can be improved significantly as the molecular weight of grafted chitosan on the dialdehyde cellulose fibers decreases.  相似文献   

3.
A novel non-toxic procedure is described for the grafting of chitosan-based microcapsules containing grapefruit seed oil extract onto cellulose. The cellulose was previously UV-irradiated and then functionalized from an aqueous emulsion of the chitosan with the essential oil. The novel materials are readily attained with durable fragrance and enhanced antimicrobial properties. The incorporation of chitosan as determined from the elemental analyses data was 16.08 ± 0.29 mg/g of sample. Scanning electron microscopy (SEM) and gas chromatography-mass spectroscopy (GC-MS) provided further evidence for the successful attachment of chitosan microcapsules containing the essential oil to the treated cellulose fibers. The materials thus produced displayed 100% inhibition of Escherichia coli and Staphylococcus epidermidis up to 48 h of incubation. Inhibition of bacteria by the essential oil was also evaluated at several concentrations.  相似文献   

4.
The effects of alkali type and the concentration in the alkali treatments on the weight loss in six cellulosic fibers and their influences on the fibrillation tendency were investigated. The fibril number of the cellulosic fibers pretreated with alkalis (FNpre) increased with increasing the alkali concentrations as well as the weight loss of the fiber except in the lyocell fiber treated in NaOH and KOH solutions. The FNpre in lyocell was reduced as the fibers were treated in 5 mol/l NaOH and KOH solutions. This result and the fact that the fibers were split in organic alkali such as tetramethylammonium hydroxide even at the low weight loss suggested that not only the loss of cellulose component but also reorganization of microfibril structure, inhomogeneous swelling of the fibers and other influences control the fibrillation tendency of cellulosic fibers.  相似文献   

5.
Surface modification of natural fibers has been made using different methods. In this paper, cellulose fibers from sugarcane bagasse were bleached and modified by zirconium oxychloride in situ. The chemically modified cellulose fibers were compared to those of bleached ones. Cellulose fibers were modified with ZrO2·nH2O nanoparticles through the use of zirconium oxychloride in acidic medium in the presence of cellulose fibers using urea as the precipitating agent. The spatial distribution characterization of hydrous zirconium oxide on cellulose fibers was carried out by combining both processing and image analyses obtained by SEM and statistical methodologies. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TG) were also used to characterize the nanocomposite. Results indicated that ZrO2·nH2O nanoparticles of about 30-80 nm diameter deposited on cellulose fibers were heterogeneously dispersed.  相似文献   

6.
The crystalline and microstructure of the regenerated cellulose fibers prepared from different solvents and technology processes were investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS). WAXD results indicated that the crystal orientation, crystallinity of Lyocell and IL-cell fibers were higher than those of Viscose and Newdal fibers. The size of micro-voids located in the cross-section of regenerated cellulose fibers was analyzed based on the results of SAXS. And the technology process had little effect on the radius of the micro-voids. The micro-voids in Viscose and Newdal fibers have longer length (L) and greater misorientation (BΦ) than that in Lyocell and IL-cell fibers. This reveals that the average void volumes of Viscose and Newdal fibers were larger. Furthermore, the regenerated cellulose fibers from dry-jet-wet-spinning process exhibited completely a higher E-modulus, tenacity than the fibers spun by wet-spinning method did.  相似文献   

7.
The effects of TEMPO-mediated oxidation, performed with NaClO, a catalytic amount of NaBr, and 2,2′,6,6′-tetramethylpiperidine-1-oxy radical (TEMPO), were studied on lyocell fibers by means of GPC using multiple detection and group-selective fluorescence labeling according to the CCOA and FDAM methodology. The applied method determines functional group content as a sum parameter, as well as functional group profiles in relation to the molecular weight of the cellulose fibers. Both the CHO and COOH profiles, as well as molecular weight alterations, were analyzed. A significant decrease in the average molecular weight was obtained during the first hour of TEMPO-mediated oxidation, but prolonged oxidation time resulted in no strong additional chain scission. Significant amounts of COOH groups were introduced in the high molecular weight fractions by the oxidation with higher concentrations of NaClO (2.42–9.67 mmol NaClO/g fiber) after modification times of 1 h or longer.  相似文献   

8.
Sorption properties of TEMPO-oxidized natural and man-made cellulose fibers   总被引:1,自引:0,他引:1  
Cotton and lyocell fibers were oxidized with sodium hypochlorite and catalytic amount of sodium bromide and 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO), under various conditions. Water-insoluble fractions, collected after TEMPO-mediated oxidation, were analyzed and characterized in terms of weight loss, aldehyde and carboxyl contents, and sorption properties. Aldehyde and carboxyl groups were introduced into the oxidized cotton up to 0.321 and 0.795 mmol/g, and into the oxidized lyocell up to 0.634 and 0.7 mmol/g, respectively, where weight loss was generally lower than 12% for cotton and 27% for lyocell. Oxidized cotton and lyocell were shown to exhibit 1.55 and 2.28 times higher moisture sorption than the original fibers, respectively, and water retention values up to about 85% for cotton and 335% for lyocell, while iodine sorption values of oxidized fibers were lower up to 35% for cotton and up to 18% for lyocell than the original fibers.  相似文献   

9.
This paper reports the development of natural cellulose fibers from hop stems with properties similar to that of hemp. Hop stems are currently considered as byproducts and have limited applications. Since hop belongs to the genus cannabis that also includes hemp, it should be possible to obtain natural cellulose fibers from the stems of hop plants with properties similar to that of hemp. A simple alkaline extraction was used to obtain fibers from the bark of hop stems. Fibers obtained have high cellulose content, low% crystallinity but show good orientation of the cellulose crystals to the fiber axis. The strength and modulus of the fibers are lower but elongation is higher than that of hemp. Based on the properties of the fibers, we expect that the hop stem fibers will be suitable for use in textiles and composites similar to the common cellulose fibers currently in use.  相似文献   

10.
The aim of this study was to develop chitosan-coated and polyplex-loaded liposomes (PLLs) containing DNA vaccine for Peyer’s patch targeting. Plain liposomes carrying plasmid pRc/CMV-HBs were prepared by the reverse-phase evaporation method. Chitosan coating was carried out by incubation of the liposomal suspensions with chitosan solution. Main lipid components of liposomes were phosphatidylcholine/cholesterol. Sodium deoxycholate and dicetyl phosphate were used as negative charge inducers. The zeta potentials of plain liposomes were strongly affected by the pH of the medium. Coating with chitosan variably increased the surface charges of the liposomes. To increase the zeta potential and stability of the liposome, chitosan was also used as a DNA condensing agent to form a polyplex. The PLLs were coated with chitosan solution. In vivo study of PLLs was carried out in comparison with chitosan-coated liposomes using plasmid encoding green fluorescence protein as a reporter. A single dose of plasmid equal to 100 μg was intragastrically inoculated into BALB/c mice. The expression of green fluorescence protein (GFP) was detected after 24 h using a confocal laser scanning microscope. The signal of GFP was obtained from positively charged chitosan-coated liposomes but found only at the upper part of duodenum. With chitosan-coated PLL540, the signal of GFP was found throughout the intestine. Chitosan-coated PLL demonstrated a higher potential to deliver the DNA to the distal intestine than the chitosan-coated liposomes due to the increase in permanent positive surface charges and the decreased enzymatic degradation.  相似文献   

11.
Detachment of the cotton fiber cell from the ovule results in loss of over 90% of the in vivo capacity for synthesis of [14C]cellulose from [14C]glucose. However, over 50% of the capacity for cellulose synthesis in the detached fiber population is protected when polyethylene glycol 4000 is present during detachment and incubation. Radioautography shows that approximately full capacity is restored in about half the fibers, whereas the other half of the population are incapable of cellulose synthesis from supplied glucose. The rate of cellulose synthesis in such fibers has a pH optimum of 6 and the optimum polyethylene glycol 4000 concentration is 0.06 molal (−9 bars). Cellulose synthesis in such detached fibers is synergistically stimulated by Ca2+ and Mg2+ and inhibited by K+.  相似文献   

12.
Incorporation of phosphate groups into a material may be of particular interest as they act as templates for hydroxyapatite growth through complexation with Ca2+ and thus improve the osteoconduction property. The phosphate groups can be incorporated into chitosan through ionotropic gelation with tripolyphosphate (TPP). Interestingly, the ion pairs formed through negatively charged phosphate groups with protonated amine functionality of chitosan in ionotropic gelation are expected to provide chitosan with an amphoteric character, which may facilitate protein adhesion following enhanced attachment of anchorage dependant cells than chitosan, which shows poor cell adhesion properties. In this study, chitosan–tripolyphosphate (TPP) fibers with varying phosphate contents were prepared through wet spinning in STPP baths of different pH. Gelation kinetics and gel strength of chitosan with STPP solutions of three different pH were evaluated and compared with that of NaOH solution for evaluation of their influence on nature of gelation. The solution pH of STPP baths was found to have significant control on the extent of ionic cross-linking and physico-chemical properties of the fibers. Moreover, this kinetically driven ionotropic gelation of chitosan by TPP results in low degree of crystallinity of chitosan–TPP fibers and consequently their lower thermal stability than chitosan fibers.  相似文献   

13.
In this study, alginate (AL) fibers were electrospun and coagulated with chitosan (ChS) and ethanol using a single spinneret. These fibers exhibited a core–sheath structure that was revealed using a confocal laser scanning microscope (CLSM) and fluorescence-labeled polymers. The resulting fibers were examined using a field emission scanning electron microscope (FESEM) for the fiber size and morphology. The average diameter of the fibers ranged from 600 to 900 nm depending on the electrospinning parameters. To mimic the stability of alginate fibers in physiological fluids, the release of alginate from these fibers in normal saline was also tested. The results demonstrated that the core–sheath structure of alginate fiber can greatly reduce the degradation by 40% for 3 d in physiological environment.  相似文献   

14.
Several compounds were tested for their ability to inhibit the in-vivo synthesis of cellulose and other cell-wall polysaccharides in fibers of cotton (Gossypium hirsutum L.) developing on in-vitro cultured ovules. Inhibitory effects were measured by the ability of the compounds to inhibit the incorporation of radioactivity from [U-14C]glucose into these cell-wall polymers. Of the compounds surveyed, 2,6-dichlorobenzonitrile (DCB) was the most effective and specific one for its effects on cellulose synthesis when compared to its effect on the synthesis of other cell-wall components. At 10 M DCB caused 80% inhibition of cellulose synthesis, and the effect was reversed upon removal of the DCB, with recovery to 90% of the control rate. Two analogs of DCB, 2-chloro-6-fluorobenzonitrile and 2,6-dichlorobenzene carbothiamide, were as specific and nearly as effective as DCB with respect to their effects on cellulose synthesis. Coumarin, generally regarded as an inhibitor of cellulose synthesis in other plant systems, was effective in cotton fibers in millimolar concentrations and, like DCB, was relatively specific with regard to its effect on cellulose synthesis. DCB and coumarin inhibited the synthesis of both primary and secondary wall cellulose. Bacitracin, an inhibitor of the cycling of phosphorylated polyprenols involved in cell-wall synthesis in bacteria, and ethylenediaminetetracetic acid (EDTA) and ethyleneglycol-bis-(-amino-ethylether)-N,N-tetracetic acid (EGTA), chelators of civalent cations, were also effective, although only at relatively high concentrations, in inhibiting incorporation of radioactivity into cellulose.Abbreviations DCB 2,6-dichlorobenzonitrite - CFB 2-chloro-6-fluorobenzonitrile - EDTA ethylenediaminetetracetic acid - EGTA ethyleneglycol-bis-(-amino-ethylether)-N,N-tetracetic acid  相似文献   

15.
Uniform fibers composed of poly(methyl methacrylate) (PMMA) reinforced with progressively increasing contents of cellulose nanocrystals (CNCs), up to 41 wt% CNCs, have been successfully produced by electrospinning. The morphological, thermal and nanomechanical properties of the composite sub-micron fibers were investigated. The CNCs derived from wood pulp by sulfuric acid hydrolysis were well dispersed in solutions of PMMA and the processing solvent N,N-dimethylformamide prior to fiber formation. Well-formed fibers with controllable diameters were generated reproducibly at all CNC contents investigated including 41 wt%. The orientation of the CNCs along the fiber axis was facilitated by the electrospinning process and observed directly from microscopy examination. Shifts in thermal transitions of PMMA with increasing CNC content suggest hydrogen bonding interactions between CNC hydroxyl groups and carbonyl groups on the PMMA matrix. Nanoscale dynamic mechanical analysis (nano-DMA) was performed using nanoindentation on single fibers perpendicular to the fiber axis. Many of the current challenges associated with single fiber nanoindentation are addressed, such as fiber diameter range and minimum, depth to diameter ratio, and valid depth range under these experimental conditions. Fibers that contained 17 wt% CNCs showed a modest increase of 17% in the storage modulus of PMMA, a high modulus polymer of interest for transparent composite applications.  相似文献   

16.
The herbicide 2,6-dichlorobenzonitrile (DCB) is an effective and apparently specific inhibitor of cellulose synthesis in higher plants. We have synthesized a photoreactive analog of DCB (2,6-dichlorophenylazide [DCPA]) for use as an affinity-labeling probe to identify the DCB receptor in plants. This analog retains herbicide activity and inhibits cellulose synthesis in cotton fibers and tobacco cells in a manner similar to DCB. When cotton fiber extracts are incubated with [3H]DCPA and exposed to ultraviolet light, an 18 kilodalton polypeptide is specifically labeled. About 90% of this polypeptide is found in the 100,000g supernatant, the remainder being membrane-associated. Gel filtration and nondenaturing polyacrylamide gel electrophoresis of this polypeptide indicate that it is an acidic protein which has a similar size in its native or denatured state. The amount of 18 kilodalton polypeptide detectable by [3H]DCPA-labeling increases substantially at the onset of secondary wall cellulose synthesis in the fibers. A similar polypeptide, but of lower molecular weight (12,000), has been detected upon labeling of extracts from tomato or from the cellulosic alga Chara corallina. The specificity of labeling of the 18 kilodalton cotton fiber polypeptide, coupled with its pattern of developmental regulation, implicate a role for this protein in cellulose biosynthesis. Being, at most, only loosely associated with membranes, it is unlikely to be the catalytic polypeptide of the cellulose synthase, and we suggest instead that the DCB receptor may function as a regulatory protein for β-glucan synthesis in plants.  相似文献   

17.
The growth and protein production of Sporotrichum pulverulentum, formerly called Chrysosporium lignorum, have been studied in submerged cultures using lignin-containing waste fibers from a newsprint mill as the only carbon source. The influence of different nitrogen sources on the growth parameters has been particularly investigated. The regulation of the production of extracellular enzymes and their interaction with the fibers is discussed. Experiments with cellulose of different degrees of polymerization and crystallinities showed that the protein content in the residual substance decreased, particularly when the crystallinity increased. When the highly crystalline powder cellulose was used as carbon source, the protein content in the residual substance was only 6% and with the mechanical waste fibers 14%. The results obtained demonstrate that the more complex the carbon source the more difficult it is to digest and the more enzyme has to be produced for its degradation. This puts a heavy burden on the protein synthesizing mechanism. Utilizing results from other work, where the endo- and exo-l, 4-β-glucanases produced by S. pulverulentum for the degradation of cellulose have been quantitatively purified, it has been calculated that the extracellular enzymes under these conditions can together account for approximately 30% of the protein in the mycelium. The endo- and exo-1,4-β-glucanases account for up to 55% of the extracellular protein. Certain possibilities of producing a final product with a high protein content using complex carbon sources are also mentioned.  相似文献   

18.
In this study we investigated the in vitro toxicity, impact on cell permeability and mucoadhesive potential of polymer-coated liposomes intended for use in the oral cavity. A TR146 cell line was used as a model. The overall aim was to end up with a selection of safe polymer coated liposomes with promising mucoadhesive properties for drug delivery to the oral cavity. The following polymers were tested: chitosan, low-methoxylated pectin (LM-pectin), high-methoxylated pectin (HM-pectin), amidated pectin (AM-pectin), Eudragit, poly(N-isopropylacrylamide-co-methacrylic acid) (p(NIPAAM-co-MAA)), hydrophobically modified hydroxyethyl cellulose (HM-HEC), and hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC). With chitosan as an exception, all the systems exhibited no significant effect on cell viability and permeability at the considered concentrations. Additionally, all the formulations showed to a varying degree an interaction with mucin (BSM type I-S); the positively charged formulations exhibited the strongest interaction, while the negatively and neutrally charged formulations displayed a moderate or low interaction. The ability to interact with mucin makes all the liposomal formulations promising for oromucosal administration. Although the chitosan-coated liposomes affected the cell viability, this formulation also influenced the cell permeability, which makes it an interesting candidate for systemic drug delivery from the oral cavity.  相似文献   

19.
Preparation and properties of alginate/carboxymethyl chitosan blend fibers   总被引:5,自引:0,他引:5  
Alginate/carboxymethyl chitosan blend fibers, prepared by spinning their mixture solution through a viscose-type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron micrography (SEM). The analyses indicated a good miscibility between alginate and carboxymethyl chitosan, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when carboxymethyl chitosan content was 30 and 10 wt%, respectively. The wet tensile strength and breaking elongation decreased with the increase of carboxymethyl chitosan content. Introduction of CM-chitosan in the blend fiber improved water-retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibres with aqueous solution of N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride and silver nitrate, respectively, exhibited good antibacterial activity to Staphylococcus aureus.  相似文献   

20.
Natural cellulose fibers from soybean straw   总被引:1,自引:0,他引:1  
This paper reports the development of natural cellulose technical fibers from soybean straw with properties similar to the natural cellulose fibers in current use. About 220 million tons of soybean straw available in the world every year could complement the byproducts of other major food crops as inexpensive, abundant and annually renewable sources for natural cellulose fibers. Using the agricultural byproducts as sources for fibers could help to address the concerns on the future price and availability of both the natural and synthetic fibers in current use and also help to add value to the food crops. A simple alkaline extraction was used to obtain technical fibers from soybean straw and the composition, structure and properties of the fibers was studied. Technical fibers obtained from soybean straw have high cellulose content (85%) but low% crystallinity (47%). The technical fibers have breaking tenacity (2.7 g/den) and breaking elongation (3.9%) higher than those of fibers obtained from wheat straw and sorghum stalk and leaves but lower than that of cotton. Overall, the structure and properties of the technical fibers obtained from soybean straw indicates that the fibers could be suitable for use in textile, composite and other industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号