首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The positive interaction between polysaccharides with active phytochemicals found in medicinal plants may represent a strategy to create active wound dressing materials useful for skin repair. In the present work, blended membranes composed of chitosan (Cht) and aloe vera gel were prepared through the solvent casting, and were crosslinked with genipin to improve their properties. Topography, swelling, wettability, mechanical properties and in vitro cellular response of the membranes were investigated. With the incorporation of aloe vera gel into chitosan solution, the developed chitosan/aloe-based membranes displayed increased roughness and wettability; while the genipin crosslinking promoted the formation of stiffer membranes in comparison to those of the non-modified membranes. Moreover, in vitro cell culture studies evidenced that the L929 cells have high cell viability, confirmed by MTS test and calcein-AM staining. The findings suggested that both blend compositions and crosslinking affected the physico-chemical properties and cellular behavior of the developed membranes.  相似文献   

2.
Chitin and chitosan are novel biomaterials. The novel chitosan/gelatin membranes were prepared using the suspension of chitosan hydrogel mixed with gelatin. The prepared chitosan/gelatin membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), mechanical, swelling, and thermal studies. The morphology of these chitosan/gelatin membranes was found to be very smooth and homogeneous. The XRD studies showed that the chitosan/gelatin membranes have good compatibility and interaction between the chitosan and gelatin. The stress and elongation of chitosan/gelatin membranes on wet condition showed excellent when the mixture ratio of gelatin was 0.50. The prepared chitosan/gelatin membranes showed good swelling, mechanical and thermal properties. Cell adhesion studies were also carried out using human MG-63 osteoblast-like cells. The cells incubated with chitosan/gelatin membranes for 24 h were capable of forming cell adhesion. Thus the prepared chitosan/gelatin membranes are bioactive and are suitable for cell adhesion suggesting that these membranes can be used for tissue-engineering applications. Therefore, these novel chitosan/gelatin membranes are useful for biomedical applications.  相似文献   

3.
The effects of the local anesthetic pyromecaine on the action potential parameters of the guinea-pig heart ventricular cardiomyocytes as well as on Na and K ionic currents of the neurons in the rat spinal ganglions have been studied. Pyromecaine was shown to reduce preferentially the first derivative of the ascending phase of cardiomyocyte action potential suggesting the blocking action of the anesthetic on the fast sodium inward current. The experiments on the isolated neurons in the rat spinal ganglions have shown that interaction of pyromecaine with inactivated Na+ channels makes a considerable contribution to the blocking effect of anesthesia.  相似文献   

4.
5.
Pure chitosan, glutaraldehyde crosslinked chitosan, and a blend of chitosan with poly(ethylene oxide) (PEO) membranes were prepared. The three membranes were characterized in terms of their swelling capacities as well as their permeabilities to a drug model (sulfamerazine sodium salt). For the permeation experiments, the variables analyzed were the type of membrane and the initial drug concentration in the liquid phase (from 0.1% to 1.5%). Permeability coefficients were calculated using UV spectroscopy. The results showed that for the three analyzed membranes, the permeability did not change with time (over the studied time interval). An increase in the permeability for CHI/PEO membranes compared to those made of pure chitosan was also observed, possibly due to microporous region formation and/or crystallinity reduction. For the crosslinked membrane, an even higher increase in the permeability coefficient was observed. In this case, the increase was attributed to free volume variation.  相似文献   

6.
Ion-carrier complexes and organic ions of similar size and shape have mobilities in lipid bilayer membranes which span several orders of magnitude. In this communication, an examination is made of the hypothesis that the basis for this unusually wide range of ionic mobilities is the potential energy barrier arising from image forces which selectively act on ions according to their polarizability. Using Poisson's equation to evaluate the electrostatic interaction between an ion and its surroundings, the potential energy barrier to ion transport due to image effects is computed, with the result that the potential energy barrier height depends strongly on ionic polarizability. Theoretical membrane potential energy profile calculations are used in conjunction with Nernst-Planck electrodiffusion equation to analyze the available mobility data for several ion-carrier complexes and lipid-soluble ions in lipid bilayer membranes. The variation among the mobilities of different ions is shown to be in agreement with theoretical predictions based on ionic polarizability and size. Furthermore, the important influence exerted by image forces on ion transport in lipid bilayer membranes compared to the frictional effect of membrane viscosity is established by contrasting available data on the activation energy of ionic conductivity with that for membrane fluidity.  相似文献   

7.
When gelification is performed by freezing–thawing repeated cycles, the resultant gel-like polymer systems are called cryogels. This work aims to assess the effect of the addition of glutaraldehyde and 18 Crown Ether-6 on surface properties and protein loading of dried chitosan cryogel films. Residual water content of treated chitosan membranes ranged between 11.93 and 13.86%, while their water activities vary from 0.5 to 0.7 (measured from 4 to 60 °C). Based on thermal data, water evaporation peak and degradation temperatures of chitosan membranes shifted to a higher temperature for crosslinked samples. X-ray diffractograms provide high values of crystallinity for all the samples (70.67–92.86%), the highest value being for the glutaraldehyde-treated membrane. Candida rugosa lipase can be immobilized successfully on chitosan membranes. Lipase immobilized on glutaraldehyde-crosslinked chitosan yielded the highest efficiency in terms of total coupled protein and protein loading efficiency.  相似文献   

8.
This paper reports the effects of peptide PV (primary structure: cyclo-(D-val-L-pro-L-val-D-pro)δ) on the electrical properties of sheep red cell lipid bilayers. The membrane conductance (Gm) induced by PV in either Na+ or K+ medium is proportional to the concentration of PV in the aqueous phase. The PV concentration required to produce a comparable increase in Gm in K+ medium is about 104 times greater than for its analogue, valinomycin (val). Although the selectivity sequence for PV and val is similar, K+ ≳ Rb+ > Cs+ > NH4 + > TI+ > Na+ > Li+; the ratio of GGm in K+ to that in Na+ is about 10 for PV compared to > 103 for val. When equal concentrations of PV are added to both sides of a bilayer, the membrane current approaches a maximum value independent of voltage when the membrane potential exceeds 100 mV. When PV is added to only one side of a bilayer separating identical salt solutions of either Na+ or K+ salts, rectification occurs such that the positive current flows more easily away rather than toward the side containing the carrier. Under these conditions, a large, stable, zero-current potential (VVm) is also observed, with the side containing PV being negative. The magnitude of this VVm is about 90 mV and relatively independent of PV concentration when the latter is larger than 2 Times; 10–5 M. From a model which assumes that Vm equals the equilibrium potential for the PV-cation complexes (MS +) and that the reaction between PV and cations is at equilibrium on the two membrane surfaces, we compute the permeability of the membrane to free PV to be about 10–5 cm s–1, which is about 10–7 times the permeability of similar membranes to free val. This interpretation is supported by the fact that the observed values of Vm are in agreement with the calculated equilibrium potential for MS+ over a wide range of ratios of concentrations of total PV in the two bathing solutions, if the unstirred layers are taken into account in computing the MS+ concentrations at the membrane surfaces.  相似文献   

9.
Summary The complexity of cell membranes makes the resolution of their macromolecular topology one of the more challenging problems in modern molecular and cellular biochemistry. Despite the difficulties inherent in any such analysis, a surprisingly simple yet powerful approach exists that has consistently yielded valuable results. This method is chemical crosslinking, in which cell membranes are treated with crosslinking reagents (usually bifunctional) which produce covalent linkages between membrane components. The resultant complexes are usually then separated and identified by electrophoresis. This review is intended to provide a guide to the i.nvestigator who is unfamiliar with this approach. The overall strategy of crosslinking is discussed including selection of reagents, conditions to optimize crosslinking and the cleavage of crosslinked complexes to regenerate the original target for identification purposes. The crosslinking of biological membranes is then reviewed with special emphasis on recent advances including macromolecular photoaffinity labeling, kinetic analysis to probe symmetry properties and potential artifacts that may complicate interpretation of results. Examples of specific applications of crosslinking to membranes are presented in tabular form. The final portion of the review discusses the synthesis and properties of the most widely employed crosslinking reagents. Available reagents are summarized in a series of comprehensive tables. It is hoped that our discussion will provide the uninitiated investigator with sufficient information to ascertain the applicability of chemical crosslinking to particular areas of interest.  相似文献   

10.
11.
The viscoelastic behaviour of chitosan was followed by dynamic mechanical analysis (DMA) while the sample was immersed in gradient compositions of water/ethanol mixtures. The swelling equilibrium of chitosan membranes, both crosslinked with genipin or not, increased linearly with the water content. Increasing the water content, it was simultaneously observed a peak in the loss factor (around 25 vol.%) and a reduction of the storage modulus, which was attributed to the α-relaxation of chitosan. This was the first time that the glass transition dynamics in a polymer was monitored in immersion conditions where the composition of the plasticizer in the bath is changed in a controlled way. The water content at which tan δ presented a maximum increased with both increasing frequency and increasing crosslinking density. The permeability decreased steadily with the ethanol content, reaching very low values around the glass transition. Therefore we hypothesize that conformational mobility of the polymeric chains may play an important role in the diffusion properties of molecules trough polymeric matrices.  相似文献   

12.
Shang J  Shao Z  Chen X 《Biomacromolecules》2008,9(4):1208-1213
An amphoteric hydrogel film was prepared by solution blending of two natural polyelectrolytes, chitosan and carboxymethylcellulose, and cross-linking with glutaraldehyde. The bending of the film in an electric field was studied in different electrolyte solutions. Because of its amphoteric nature, the hydrogel can bend toward either anode or cathode depending on the pH of the solution. Other factors such as ionic strength and electric field strength also influence the electromechanical behavior of the hydrogels. The equilibrium bending angle of the hydrogel was found to reach a maximum at about 90 degrees in pH = 6 Britton-Robinson buffer solution with an ionic strength of 0.2 M. The sensitivity of the films over a wide range of pH and the good reversibility of this natural amphoteric electric-sensitive hydrogel suggest its future use in microsensor and actuator applications, especially in the biomedical field.  相似文献   

13.
Effective hydrolysis of chitosan, the N-deacetylated product of chitin, remains challenging. Here, we report acid-promoted hydrolysis of chitosan in imidazolium based ionic liquids with good total reducing sugars (TRS) yield under mild conditions. TRS yield reached over 60% in the presence of about 6.0 wt% concentrated hydrochloric acid at 100 °C within 7 h. Kinetic modeling of a typical experimental data set suggested that the hydrolysis most likely followed a consecutive first-order reaction sequence, where k1 and k2, the rate constants for TRS formation and degradation, were determined to be 0.01372 and 0.00015 min−1, respectively. Our method may be useful to explore new applications of natural chitin resources.  相似文献   

14.
The rate of inactivation of poliovirus in water by chlorine is strongly influenced by the pH, which in turn influences the relative amounts of HOCl and OCl- that are present and acting on the virus in the region of pH 6 to 10. The distribution of HOCl and OCl- is influenced to a lesser extent by the addition of NaCl. The major part of the sharp increase in disinfection rate seen with this salt is thought to be due to its effect on the virus itself resulting in an increased chlorine sensitivity, especially at high pH.  相似文献   

15.
Effect of gradual increase of cholesterol content in T-lymphocyte membranes on the structure and physical state of plasmic membrane lipids and activities of the membrane-bound enzymes was investigated. The increase in cholesterol content was shown to result in a two-phase change of luminescence parameters of the fluorescent probes dimethylaminochalcone and pyrene, which indicates heterogeneity of cholesterol in the membranes. With the growth of steroid content in the cell membranes, at first, we observed a sharp decrease in the lipid bilayer fluidity and inhibition of Na+, K+-ATPase activity, which at the molar ratio cholesterol/phospholipids 0.6 in thymocyte membranes, remains at the same level. With higher cholesterol concentrations ATPase activity did not change. The effect of cholesterol on ATPase activity was in a good agreement with the effect of membrane lipids on fluidity. It is suggested that two pools of cholesterol molecules exist in the membranes, differing in their effects of bilayer fluidity and functional activity of the membranes.  相似文献   

16.
This study presents a new approach for direct carboxyalkylation of chitosan in the gel state by using aza-Michael addition and substitution reactions. Various reagents were applied including acrylic and crotonic acids, and α-, β-, γ-, δ-, and ?-halocarboxylic acids. The reaction of chitosan with γ- and δ-halocarboxylic acids showed no target product formation either in solution or in the gel state. In the case of acrylic, crotonic, α- and β-halocarboxylic acids, the reaction performed in the gel state (concentration of chitosan 20-40%) shows higher degree of substitution at lower reaction time and temperature than in diluted solutions (concentration of chitosan 0.5-2%). The results were discussed in terms of kinetics of the target and side reactions. (1)H and (13)C NMR confirmed that in all cases the carboxyalkylation of chitosan proceeds exclusively at the amino groups.  相似文献   

17.
Effect of ovulation on the ionic and water content of rabbit oviduct   总被引:1,自引:0,他引:1  
The water content, extracellular space, intracellular water, potassium, sodium and chloride content of oviduct and uterus removed from rabbits in estrus and 24 and 72 h following hCG injection have been determined. Following ovulation, there was an increase in water content of the region of the oviduct corresponding to the ampullary -isthmic junction which, at 24 h, is probably due to increased intracellular water. In the ampullary-isthmic junction, ovulation decreases the potassium content and, at 24 h in the isthmic region of the oviduct, chloride is reduced. The water and ionic content of mucosa and smooth muscle cells has been calculated and mucosa cells have greater intracellular water and chloride and sodium content and less potassium and extracellular space than the smooth muscle cells of the oviduct. The significance of the changes in ionic and water content is discussed.  相似文献   

18.
The rate of inactivation of poliovirus in water by chlorine is strongly influenced by the pH, which in turn influences the relative amounts of HOCl and OCl- that are present and acting on the virus in the region of pH 6 to 10. The distribution of HOCl and OCl- is influenced to a lesser extent by the addition of NaCl. The major part of the sharp increase in disinfection rate seen with this salt is thought to be due to its effect on the virus itself resulting in an increased chlorine sensitivity, especially at high pH.  相似文献   

19.
Summary Dielectric measurements were made on suspensions of yeast cells treated with two homologous series of sodium alkyl (C8, C10, C12, C14) sulfonates and alkyl (C8, C10, C12, C14, C16, C18) benzyl dimethyl ammonium chlorides over a frequency range of 10 kHz to 100 MHz. Dielectric dispersions observed for the suspensions of intact yeast cells are found to be reduced by treatment with these detergents, the reduction being accompanied by a decrease in packed volume of the cells and by a leakage of intracellular compounds. The reduction of dielectric dispersions is considered to be caused by a decrease in volume of the cells in suspensions and an increase in conductivity of the cell membranes. An effect of the alkyl chain length of the detergents on the reduction of dielectric dispersions is also examined for these ionic detergents. The reducing effect shows the maximum at the alkyl chain, C14 for sodium alkyl sulfonates and at C16 for alkyl benzyl dimethyl ammonium chlorides. These results are consistent with hemolysis and bactericidal activity.  相似文献   

20.
Effect of PCMBS on water transfer across biological membranes   总被引:4,自引:0,他引:4  
P-chloromercuriphenylsulfonate, PCMBS, and 5, 5′ dithiobis-(2-nitrobenzoic acid), DTNB at a concentration of 1 mM are found to inhibit the rate of water transport across human red cell membrane. In addition PCMBS inhibits the rates of transport of small hydrophilic but not hydrophobic nonelectrolytes. Other sulfhydryl reagents such as N-ethylmaleimide and iodoacetamide have no significant effect on the rate of water transfer in these cells. The results suggest that there are at least two populations of membrane bound SH-groups which differ in their topical location which participate in the control of water transfer. One is located closer to the outer surface of the membrane, and thus is readily accessible to PCMBS while the other component is probably located in the membrane interior. These two populations can be dissociated by pH. The effect of PCMBS on water transfer can be greatly influenced by pH and temperature. The main effect of temperature and pH is on the permeability of the membrane to the drug. The same concentration of PCMBS is also found to inhibit to a lesser degree water transfer across other biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号