首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tapioca starch was modified using branching enzyme (BE) isolated from Bacillus subtilis 168 and Bacillus stearothermophilus maltogenic amylase (BSMA), and their molecular fine structure and susceptibility to amylolytic enzymes were investigated. By BE treatment, the molecular weight decreased from 3.1 × 108 to 1.7 × 106, the number of shorter branch chains (DP 6–12) increased, the number of longer branch chains (DP >25) decreased, and amylose content decreased from 18.9% to 0.75%. This indicated that α–1,4 linkages of amylose and amylopectin were cleaved, and moiety of glycosyl residues were transferred to another amylose and amylopectin to produce branched glucan and BE-treated tapioca starch by forming α–1,6 branch linkages. The product was further modified with BSMA to produce highly-branched tapioca starch with 9.7% of extra branch points. When subject to digestion with human pancreatic α-amylase (HPA), porcine pancreatic α-amylase (PPA) and glucoamylase, highly-branched tapioca starch gave significantly lowered α-amylase susceptibility (7.5 times, 14.4 times and 3.9 times, respectively), compared to native tapioca starch.  相似文献   

2.
Starch is subjected to chemical treatments such as cross-linking or hydroxypropylation to meet the material requirements for food uses or controlled release in the pharmaceutical industries. In this work, two types of cross-linking formulations have been employed for the preparation of high amylose starch for use as an excipient for sustained drug release. The structural differences and chain dynamics of the modified starches in the dry and hydrated states have been compared by the use of variable contact time cross polarization-magic angle spinning solid state (13)C NMR spectroscopy.  相似文献   

3.
Effect of single and dual hydrothermal modifications with annealing (ANN) and heat-moisture treatment (HMT) on molecular structure and physicochemical properties of corn starch was investigated. Normal corn starch was modified by ANN at 70% moisture at 50 °C for 24 h and HMT at 30% moisture at 120 °C for 24 h as well as by the combination of ANN and HMT. The apparent amylose content and swelling factor (SF) decreased on ANN and HMT, but amylose leaching (AML) increased. These changes were more pronounced on dual modification. The crystallinity (determined by X-ray diffraction), the gelatinization enthalpy (determined by differential scanning calorimetry) and ratio of 1047 cm?1/1022 cm?1 (determined by Fourier transform infrared spectroscopy) slightly increased on ANN and decreased on HMT. The ANN and subsequent HMT (ANN-HMT) resulted in the lowest crystallinity, gelatinization enthalpy and ratio of 1047 cm?1/1022 cm?1. The gelatinization temperature range decreased on ANN but increased on HMT. However, the gelatinization range of dually modified starches (ANN-HMT and HMT-ANN) was between ANN starch and HMT starch. Birefringence remained unchanged on ANN but slightly decreased on HMT as well as dual modification. Average chain length and amount of longer branch chains (DP  37) remained almost unchanged on ANN but decreased on HMT and dual modifications (ANN-HMT and HMT-ANN). HMT and dual modifications resulted in highly reduced pasting viscosity. ANN and HMT as well as dual modifications increased RDS content and decreased SDS and RS content.  相似文献   

4.
The effect of debranching enzyme concentration on physicochemical properties and α-amylase hydrolysis rate of resistant starch type III from high amylose rice starch were studied. The pullulanase enzyme (8, 10, 12, 14 and 16 U/g starch) was introduced to modify amylopectin molecules of 15% (w/w) gelatinized rice starches at 55 °C for 16 h. The debranched starches with different degrees of hydrolysis (0.14–5.27%), and having 66.60–98.82% β-amylolysis limit were then induced at 4 °C for 16 h, afterward a one cycle of freeze–thaw process (?10/30 °C) was applied. The results showed that a pullulanase hydrolysis improved the degree of syneresis (51.64–54.85% from 8 to 16 U/g starch). Resistant starch content increased sharply as the amount of the enzyme increased, reaching the highest (19.81%) for a 12 U/g starch and decreased to 13.16% by 16 U/g starch. α-Amylase hydrolysis rate showed that incompletely-debranched had a lower estimated glycemic index than completely debranched rice starches. Microstructure of the selected RS III samples using X-ray diffraction and scanning electron microscopy revealed a crystal pattern change from A- to V-type pattern and formed a coarse honeycomb-like and a filamentous network structure.  相似文献   

5.
A combined approach of fluorophore-assisted capillary electrophoresis (FACEL), high-sensitivity differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and light (LM) and scanning electron microscopy (SEM) was applied to study the effects of changes in amylopectin chain-length distribution on the assembly structures of sweet potato starches with similar amylose levels. It was shown that unlike ordinary sweet potato starch, starch extracted from Quick Sweet cultivar of sweet potato had anomalous high level of amylopectin chains with a degree of polymerization (DP) 6–12. Joint analysis of the obtained data revealed that amylopectin chains with DP 10–24 are, apparently, the dominant material for the formation of supramolecular structures in starch granules. In contrast, amylopectin chains with DP < 10 facilitated the formation of defects within crystalline lamellae. An increase in relative content of amylopectin chains with DP < 10 is accompanied by the correlated structural alterations manifested at all levels of starch granule organization (crystalline lamellae, amylopectin clusters, semi-crystalline growth rings, and granule morphology). Thus, the short amylopectin chains with DP < 10 were considered as an origin of the defectiveness in starch supramolecular structures.  相似文献   

6.
Characterization of a crosslinked high amylose starch excipient.   总被引:2,自引:0,他引:2  
A controlled release excipient based on sodium trimetaphosphate (STMP) crosslinked high amylose starch has been examined by 13C CP/MAS NMR. The dry excipient powder is pressed to a hard tablet whose volume increase in H2O runs parallel to the STMP concentration used. The known polymorph resonances of single helix 'V' starch (hydrated) and double helix 'B' starch (hydrated) both contribute to the spectrum corresponding to the swollen tablet. The wet tablet when loaded with a pharmaceutical agent provides a near zero-order release profile for up to 20 h. The swelling and drug release behaviour is explained in terms of self-assembly of the STMP treated starch nanomolecular particles. These particles are drawn together by "self-assembly" due to formation of amylose double helices as water penetrates the tablet. An optimum level of chemical crosslinking ensures the integrity of the swollen tablet whose sponge-like structure enclosed by a membranous surface is responsible for sustained release.  相似文献   

7.
Three experiments were conducted to study effects of amylose/amylopectin ratios and starch particle size on ruminal digestion characteristics of barley starch using an automated in vitro gas production system. In Experiment 1, starch digestion characteristics were measured in 12 barley cultivars with different amylose/amylopectin ratios, both as milled grain and as purified starch isolated from the original grain samples. The same 12 cultivars, harvested 1 year later from the same locations, were used in Experiment 2. Gas production was measured in milled samples, and in neutral detergent fibre (NDF) extracted from the same samples. The objective of this approach was to estimate gas production from neutral detergent solubles (NDS) as an approximation of starch. This was done by subtracting the NDF gas curve from the total gas production curve. In Experiment 3, starch digestion characteristics were measured for large and small starch granules from nine of the original cultivars used in Experiment 1. The gas curves obtained were fitted to a three-pool Gompertz model, and the effective rate of digestion (kd) was estimated with a two-compartmental rumen model. In Experiment 1, the effective starch kd for milled barley and purified starch were 0.122 and 0.118/h, respectively. Barley cultivars with low amylose (LA) had a higher effective kd (0.148/h) compared with cultivars with normal amylose (NA) (0.115/h) and high amylose (HA) (0.102/h) (P=0.010). Results obtained with milled barley were supported by the purified barley starch sample results, but differences were smaller and only numerically different. In Experiment 2, the ranking of the amylose groups was consistent with those in Experiment 1 (i.e., LA > NA > HA) (P=0.096). However, these differences were not reflected in the effective kd for the NDS fraction (P=0.366). Thus, factors other than those related to starch per se, or other structural features, are apparently important. Barley cultivars in the LA group had a higher effective kd for aNDF (0.098/h) than did NA and HA barley (0.060 and 0.055/h, respectively). Thus, the effect of the amylose group on the effective kd for aNDF corresponded well with the milled barley results. The NDF fraction, directly or indirectly, has a clear impact on the ruminal digestion rate of barley starch. There was no difference in the effective kd for starch between the small (0.126/h) and large (0.129/h) starch granules.  相似文献   

8.
《Biological Control》2004,29(2):179-188
The decapitating fly Pseudacteon tricuspis Borgmeier was released at eight sites in North Florida between the summer of 1997 and the fall of 1999 as a self-sustaining biocontrol agent of the red imported fire ant, Solenopsis invicta Buren. Several releases used parasitized fire ant workers while most involved adult flies released over disturbed ant mounds. Establishment and dispersal of fly populations were monitored by disturbing about 10 fire ant mounds at each site and then inspecting them closely for hovering flies over a period of about 30 min. Overwintering populations of flies were successfully established at 6 of 8 release sites. Over several years, fly populations at these sites increased to levels as high or higher than those normally seen in their South American homeland. By the fall of 1999, flies had expanded out 1–6 km from five release sites and occupied about 125 km2. By the fall of 2000 the five initial release sites plus one new site had fused into one large area about 70 km in diameter. The flies had expanded out an additional 16–29 km and occupied about 3300 km2. By the fall of 2001 the flies had expanded out an additional 10–30 km and occupied approximately 8100 km2. Fly dispersal was not related to wind patterns in the Gainesville area. Based on the above rates of dispersal and an establishment rate of 66%, we estimate that a state the size of Florida would require 5–10 releases spaced over a 3-year period to cover the state in 6–9 years.  相似文献   

9.
Starch obtained from yellow and white plantain varieties were subjected to proximate analysis, physicochemical and rheological characterization in order to evaluate their properties. Yellow plantain variety gave higher yield of starch than the white variety. The two varieties differed in the purity of starch extract; white plantain starch contained: ash (1.09%), protein (0.640%) and fat (0.276%) while yellow plantain starch contained: ash (0.95%), protein (0.325%) and fat (0.403%). The amylose content of yellow plantain starch (24.36% (apparent), 26.13% (total)) was similar to that of white plantain starch (24.24% (apparent), 26.01% (total)). Scanning electron microscopy revealed bimodal irregular shaped granules (3.74–7.00 and 10.00–33.00 μm) in white plantain starch and elliptical granules (11.22–41.00 μm) in yellow plantain starch. Both starches differed markedly in their physicochemical properties. Their differences in gelatinization temperature (yellow plantain, 64.99–73.90 °C; white plantain, 68.08–77.15 °C), swelling and solubility patterns, and pasting characteristics indicated that yellow plantain starch had weaker granule architecture compared with white plantain starch. Further evidence of differences in properties was obtained from flow and viscoelastic properties of the starch gels, paste clarity and freeze–thaw stability.  相似文献   

10.
Oxidation of rice starch was achieved via electro-generated mixed oxidant due to the electrolysis of saline solution using the titanium/rhodium thermally activated modified electrode. The factors affecting the oxidation criteria such as the pH value of the reaction medium, current density, duration, temperature of oxidation, and the supporting electrolyte concentration were studied. The resultant oxidized starch was evaluated via determining the carbonyl and carboxyl contents as well as the apparent viscosity at different rates of shears. Results obtained indicate that, the optimum operating conditions for the electrocatalytic oxidation of rice starch “suitable sizing materials for cellulosic based textile warps” by the titanium/rhodium thermally activated modified electrode are, current density 7.5 mA/cm2, pH 3, solution temperature 25 °C, time of electrolysis 60 min. and 7.5 g/l of sodium chloride as supporting electrolyte.  相似文献   

11.
《Process Biochemistry》2007,42(4):669-675
This study examined the feasibility of using polycaprolactone (PCL) and its composites (with starch and/or clay) in encapsulating cells of phosphate-solubilizing bacteria (PSB) for the development of biodegradable and “controlled-release” bacterial fertilizer. The PSB used in this work was an indigenous Bacillus sp. PG01 isolate. The results show that the PG01 strain was able to degrade all the cell-loaded capsules made of PCL and PCL composites, resulting in a continual cell release. Morphology observation indicates that severe disruption of the capsule structure occurred after incubation for 15–20 days. The biodegradability of the capsules decreased in the order of PCL/starch (20 wt%) > PCL/starch (20 wt%)/cay (7 wt%) > PCL alone > PCL/clay (7 wt%). Similar trends were also observed for the decrease in tensile strength and elongation at break, suggesting strong connections between biodegradability and the mechanical properties. Addition of starch appeared to enhance the biodegradability of the capsules, whereas the clay-blended composites were less biodegradable. The amount and rate of cell release from cell-encapsulated PCL-based capsules were positively dependent on the biodegradability and on the decrease in the mechanical strength. Nevertheless, the pattern of cell release was quite similar for all types of capsules. The outcome of this work seems to suggest that by proper manipulation of composite compositions, the controlled release of the bacterial fertilizer (i.e., Bacillus sp. PG01 cells) might be achievable.  相似文献   

12.
13.
The purpose of this study is to investigate the feasibility of using cerium oxide nanoparticles (CONPs) as radical scavengers during accelerated partial breast irradiation (APBI) to protect normal tissue. We hypothesize that CONPs can be slowly released from the routinely used APBI balloon applicators—via a degradable coating—and protect the normal tissue on the border of the lumpectomy cavity over the duration of APBI. To assess the feasibility of this approach, we analytically calculated the initial concentration of CONPs required to protect normal breast tissue from reactive oxygen species (ROS) and the time required for the particles to diffuse to various distances from the lumpectomy wall. Given that cerium has a high atomic number, we took into account the possible inadvertent dose enhancement that could occur due to the photoelectric interactions with radiotherapy photons. To protect against a typical MammoSite treatment fraction of 3.4 Gy, 5 ng·g−1 of CONPs is required to scavenge hydroxyl radicals and hydrogen peroxide. Using 2 nm sized NPs, with an initial concentration of 1 mg·g−1, we found that 2–10 days of diffusion is required to obtain desired concentrations of CONPs in regions 1–2 cm away from the lumpectomy wall. The resultant dose enhancement factor (DEF) is less than 1.01 under such conditions. Our results predict that CONPs can be employed for radioprotection during APBI using a new design in which balloon applicators are coated with the NPs for sustained/controlled in-situ release from within the lumpectomy cavity.  相似文献   

14.
In this study a branching enzyme (BE, α-1,4  α-1,6 glycosyltransferase) was used to modify starch granules of different structures at high temperature and at extreme starch dry matter content (30–40%, w/v) to restrict temperature-induced swelling. As opposed to diluted systems, such conditions led to stabilization of the granular structure for low-phosphate starch types at the highest BE activity. Bright field/polarized light and scanning electron microscopy confirmed maintenance of granular structure. The product compared to the control had significantly increased degree of branching as identified by shorter branch-length of the α-1,4 chains assessed by chromatography and larger proportion of α-1,6 links to α-1,4 links as assessed by 1H nuclear magnetic resonance spectroscopy. Size exclusion chromatography demonstrated the presence of uniform molecules with smaller size. Further the polysaccharide product was 40% more soluble at 25 °C than the corresponding heat treated control. Both of these observations were supported by 13C solid-state MAS NMR. Hence, significant chain transfer took place in the semi-solid state starch permitting conservation of the main granular organization in the final product. A hypothetic model is presented to account for the observed phenomenon.  相似文献   

15.
Potato pulp is a high-volume, low-value byproduct stream resulting from the industrial manufacture of potato starch. The pulp is a rich source of biologically functional dietary fibers, but the targeted valorisation of the fibers requires removal of the residual starch from the pulp. The objective of this study was to release the residual starch, making up 21–22% by weight of the dry matter, from the potato pulp in a rational way employing as few steps, as few enzyme activities, as low enzyme dosages, as low energy input (temperature and time), and as high pulp dry matter as possible. Starch removal to obtain dietary fibers is usually accomplished via a three step, sequential enzymatic treatment procedure using a heat stable α-amylase, protease, and amyloglucosidase. Statistically designed experiments were performed to investigate the influence of enzyme dose, amount of dry matter, incubation time and temperature on the amount of starch released from the potato pulp. The data demonstrated that all the starch could be released from potato pulp in one step when 8% (w/w) dry potato pulp was treated with 0.2% (v/w) (enzyme/substrate (E/S)) of a thermostable Bacillus licheniformis α-amylase (Termamyl® SC) at 70 °C for at least 65 min. The study also indicated that the amount of other carbohydrates released from the pulp during the release of starch was less than using the AOAC Official Method 985.29 and another recently published starch release method employed as a pretreatment for enzymatic upgrading of a pectinaceous potato pulp fiber.  相似文献   

16.
In this paper, a simple and versatile coacervation technique has been developed by using an ultrasound-assisted oil/water emulsion method for the preparation of antifungal agent-loaded microcapsules. Two types of chitosan microcapsules are successfully prepared. The mean particle size of the chitosan/miconazole nitrate microcapsules is 2.6 μm and that of the chitosan/clotrimazole microcapsules is 4.1 μm. The encapsulation efficiency of the chitosan/miconazole nitrate microcapsules (77.58–96.81%) is relatively higher than that of the chitosan/clotrimazole microcapsules (56.66–93.82%). The in vitro drug release performance of the microcapsules shows that the chitosan/miconazole nitrate microcapsules release about 49.5% of the drug while chitosan/clotrimazole microcapsules release more than 66.1% of the drug after 12 h under a pressure of 5 kg at pH 5.5, which is similar to the pH of human skin. The prepared drug-loaded microcapsules could be applied onto bandages or socks, and will continuously release antifungal drugs in a controlled manner under pressure.  相似文献   

17.
Multi-arm star amphiphilic block copolymers (SABCs) with approximately 32 arms were synthesized and characterized for drug delivery applications. A hyperbranched polyester, boltorn® H40 (H40), was used as the macroinitiator for the ring-opening polymerization of ?-caprolactone (?-CL). The resulting multi-arm H40-poly(?-caprolactone) (H40-PCL-OH) was further reacted with carboxyl terminated methoxy poly(ethylene glycol) (MPEG-COOH) to form H40-PCL-b-MPEG copolymers. The resulting SABCs were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC). The critical aggregation concentration (CAC) of H40-PCL-b-MPEG was 3.8 mg/L as determined by fluorescence spectrophotometry. Below the CAC, stable unimolecular micelles were formed with an average diameter of 18 nm as measured by TEM. Above the CAC, unimolecular micelles exhibited agglomeration with an average diameter of 98 nm. The hydrodynamic diameter of these agglomerates was found to be 122 nm, as measured by dynamic light scattering (DLS). The drug loading efficacy of the H40-PCL-b-MPEG micelles was 26 wt%. Drug release study showed an initial burst followed by a sustained release of the entrapped hydrophobic model drug, 5-fluorouracil, over a period of 9–140 h. These results indicate that the H40-PCL-b-MPEG micelles have great potential as hydrophobic drug delivery carriers.  相似文献   

18.
Characteristics of native starch have limited its application in solid dosage forms as a sustained release agent. There is a growing interest in improving starch functionality for sustained release applications because of its non-toxicity and biodegradability. This study attempted to investigate extruded starch phosphates as an excipient in sustaining drug release. Starches from various botanical sources with different amylose contents, including waxy corn, common corn, Hylon V (50% amylose), Hylon VII (70% amylose), and potato, were used to prepare starch phosphates at pH 9.0 or 11.0 using a reactive extrusion method. Phosphorous content was higher for starch phosphates prepared at pH 9.0 than at pH 11.0, and varied with starch type when phosphorylated at pH 9.0. Reactive extrusion produced starch extrudates that upon forming hydrogels were capable of sustaining release of metoprolol tartrate (MPT). The structural features of the hydrogel as modified by the phosphorylation reaction were found to alter the kinetics of drug release from the swellable matrices. The unmodified extrudates formed weaker gels as evidenced by their rheological properties, and showed faster drug release. Waxy corn starch phosphorylated at pH 9.0 as well as common corn and potato starches phosphorylated at pH 11.0 were found to exhibit more case-II-like properties attributed to a high density of cross-links and stronger chain entanglement. Waxy corn starch phosphorylated at pH 9.0 exhibited the lowest degree of drug release. The entanglement among amylopectin molecules and branch chains was suggested to play a role in governing MPT release.  相似文献   

19.
Ionic liquids (ILs), 1-allyl-3-methylimidazolium chloride ([amim]Cl) is found to be a novel plasticizer for cornstarch. [Amim]Cl-plasticized starch film also has a potential application as solid biopolymer electrolytes. In this study, different proportional [amim]Cl/glycerol mixtures are used to plasticize starch by casting. Atomic force microscopy (AFM) finds the diameter of residual starch granules existed in [amim]Cl or glycerol-plasticized starch films is only about 10 nm. However, glycerol can form more intensive hydrogen bond with starch than [amim]Cl detected by Fourier transform infrared (FT-IR) spectroscopy. So some novel ILs with high concentration and active hydrogen bond acceptors are necessary. Moreover, high [amim]Cl content can improve the water absorption and conductance of TPS film simultaneously. The conductance of TPS film with 30 wt% [amim]Cl content can achieve to 10?1.6 S cm?1 at 14.5 wt% water content.  相似文献   

20.
In order to optimize maize production and variety utilization in high altitude areas, the growth period and some quality traits of three maize varieties were compared among five elevations, 1280.0, 1506.5, 1706.5, and 2000.0, 2231.5 m in Gansu province and three elevations, 1435.0, 1860.0, and 2186.0 m in Yunnan province, China. This vertical ecological experiment was conducted in 2008 and 2009. The results showed that the growth period of maize sowed at similar time was extended along with altitude elevating, there was about 4–5 d extension with each 100 m increase in altitude. Both fat content and amylose/starch ratios had significant negative correlations with altitude, no correlation was found between crude protein content and altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号