首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small monomeric proteins from mesophilic and thermophilic organisms were studied. They have close structural and physical and chemical properties but vary in thermal stability. A thermodynamic analysis of heat unfolding was made and integral enthalpy of unfolding (DeltaH(unf)), heat capacity of hydration (DeltaC(p)(hyd)) and enthalpy of hydration (DeltaH(hyd)) and of the buried surface area (DeltaASA) of nonpolar and polar groups as well as the enthalpy of disruption of intramolecular interaction (DeltaH(int) in gas phase) at 298 K were determined. The absence of correlation between protein thermostability and energetic components suggests that regulatory mechanism of protein thermal stabilization has entropic nature.  相似文献   

2.
Temperature- and pressure-induced unfolding of staphylococcal nuclease (SNase) was studied by Royer, Winter et al. using a variety of experimental techniques (SAXS, FT-IR and fluorescence spectroscopy, DSC, PPC, densimetry). For a more detailed understanding of the underlying mechanistic processes of the different unfolding scenarios, we have carried out a series of molecular dynamics (MD) computer simulations on SNase. We investigated the initial changes of the structure of the protein upon application of pressure (up to 5 kbar) and discuss volumetric and structural differences between the native and pressure pre-denatured state. Additionally, we have obtained the compressibility of the protein and hydration water and compare these data with experimental results. As water plays a crucial role in determining the structure, dynamics and function of proteins, we undertook a detailed analysis of the structure of the interfacial water and the protein-solvent H-bond network as well. Moreover, we report here also MD results on the temperature-induced unfolding of SNase. The time evolution of the protein volume and solvent accessible surface area during thermal unfolding have been investigated, and we present a detailed discussion of the temperature-induced unfolding pathway of SNase in terms of secondary and tertiary structural changes.  相似文献   

3.
Fitter J 《Biophysical journal》2003,84(6):3924-3930
Thermal unfolding of proteins at high temperatures is caused by a strong increase of the entropy change which lowers Gibbs free energy change of the unfolding transition (DeltaG(unf) = DeltaH - TDeltaS). The main contributions to entropy are the conformational entropy of the polypeptide chain itself and ordering of water molecules around hydrophobic side chains of the protein. To elucidate the role of conformational entropy upon thermal unfolding in more detail, conformational dynamics in the time regime of picoseconds was investigated with neutron spectroscopy. Confined internal structural fluctuations were analyzed for alpha-amylase in the folded and the unfolded state as a function of temperature. A strong difference in structural fluctuations between the folded and the unfolded state was observed at 30 degrees C, which increased even more with rising temperatures. A simple analytical model was used to quantify the differences of the conformational space explored by the observed protein dynamics for the folded and unfolded state. Conformational entropy changes, calculated on the basis of the applied model, show a significant increase upon heating. In contrast to indirect estimates, which proposed a temperature independent conformational entropy change, the measurements presented here, demonstrated that the conformational entropy change increases with rising temperature and therefore contributes to thermal unfolding.  相似文献   

4.
The denatured states of alpha-lactalbumin, which have features of a molten globule state, have been studied to elucidate the energetics of the molten globule state and its contribution to the stability of the native conformation. Analysis of calorimetric and CD data shows that the heat capacity increment of alpha-lactalbumin denaturation highly correlates with the degree of disorder of the residual structure of the state. As a result, the denaturational transition of alpha-lactalbumin from the native to a highly ordered compact denatured state, and from the native to the disordered unfolded state are described by different thermodynamic functions. The enthalpy and entropy of the denaturation of alpha-lactalbumin to compact denatured state are always greater than the enthalpy and entropy of its unfolding. This difference represents the unfolding of the molten globule state. Calorimetric measurements of the heat effect associated with the unfolding of the molten globule state reveal that it is negative in sign over the temperature range of molten globule stability. This observation demonstrates the energetic specificity of the molten globule state, which, in contrast to a protein with unique tertiary structure, is stabilized by the dominance of negative entropy and enthalpy of hydration over the positive conformational entropy and enthalpy of internal interactions. It is concluded that at physiological temperatures the entropy of dehydration is the dominant factor providing stability for the compact intermediate state on the folding pathway, while for the stability of the native state, the conformational enthalpy is the dominant factor.  相似文献   

5.
Important properties of globular proteins, such as the stability of its folded state, depend sensitively on interactions with solvent molecules. Existing methods for estimating these interactions, such as the geometrical surface model, are either physically misleading or too time consuming to be applied routinely in energy calculations. As an alternative, we derive here a simple model for the interactions between protein atoms and solvent atoms in the first hydration layer, the solvent contact model, based on the conservation of the total number of atomic contacts, a consequence of the excluded-volume effect. The model has the conceptual advantage that protein-protein contacts and protein-solvent contacts are treated in the same language and the technical advantage that the solvent term becomes a particularly simple function of interatomic distances. The model allows rapid calculation of any physical property that depends only on the number and type of protein-solvent nearest-neighbor contacts. We propose use of the method in the calculation of protein solvation energies, conformational energy calculations, and molecular dynamics simulations.  相似文献   

6.
Although unfolding of protein in the liquid state is relatively well studied, its mechanisms in the solid state, are much less understood. We evaluated the reversibility of thermal unfolding of lysozyme with respect to the water content using a combination of thermodynamic and structural techniques such as differential scanning calorimetry, synchrotron small and wide-angle X-ray scattering (SWAXS) and Raman spectroscopy. Analysis of the endothermic thermal transition obtained by DSC scans showed three distinct unfolding behaviors at different water contents. Using SWAXS and Raman spectroscopy, we investigated reversibility of the unfolding for each hydration regime for various structural levels including overall molecular shape, secondary structure, hydrophobic and hydrogen bonding interactions. In the substantially dehydrated state below 37 wt% of water the unfolding is an irreversible process and can be described by a kinetic approach; above 60 wt% the process is reversible, and the thermodynamic equilibrium approach is applied. In the intermediate range of water contents between 37 wt% and 60 wt%, the system is phase separated and the thermal denaturation involves two processes: melting of protein crystals and unfolding of protein molecules. A phase diagram of thermal unfolding/denaturation in lysozyme - water system was constructed based on the experimental data.  相似文献   

7.
8.
The thermal unfolding and domain structure of Na+/K+-ATPase from pig kidney were studied by high-sensitivity differential scanning calorimetry (HS-DSC). The excess heat capacity function of Na+/K+-ATPase displays the unfolding of three cooperative domains with midpoint transition temperatures (Td) of 320.6, 327.5, 331.5 K, respectively. The domain with Td = 327.5 K was identified as corresponding to the beta subunit, while two other domains belong to the alpha subunit. The thermal unfolding of the low-temperature domain leads to large changes in the amplitude of the short-circuit current, but has no effect on the ATP hydrolysing activity. Furthermore, dithiothreitol or 2-mercaptoethanol treatment causes destruction of this domain, accompanied by significant disruption of the ion transporting function and a 25% loss of ATPase activity. The observed total unfolding enthalpy of the protein is rather low (approximately 12 J.g-1), suggesting that thermal denaturation of Na+/K+-ATPase does not lead to complete unfolding of the entire molecule. Presumably, transmembrane segments retain most of their secondary structure upon thermal denaturation. The binding of physiological ligands results in a pronounced increase in the conformational stability of both enzyme subunits.  相似文献   

9.
Fluorescence, CD, and activity measurements were used to characterize the different conformational states of horseradish peroxidase A1 induced by thermal unfolding. Picosecond time-resolved fluorescence studies showed a three-exponential decay dominated by a picosecond lifetime component resulting from energy transfer from tryptophan to heme. Upon thermal unfolding a decrease in the preexponential factor of the picosecond lifetime and an increase in the quantum yield were observed approaching the characteristics observed for apoHRPA1. The fraction of heme-quenched fluorophore decreased to 0.4 after unfolding as shown by acrylamide quenching. A new unfolding pathway for HRPA1 was proposed and the effect of the low molecular weight solutes trehalose, sorbitol, and melezitose on this pathway was analyzed. Native HRPA1 unfolds with an intermediate between the native and the unfolded conformation. The unfolded conformation can refold to the native state or to a native-like conformation with no calcium ions upon cooling or can give an irreversible denatured state. The refolded conformation with no calcium ions was clearly identified in a second thermal scan in the presence of EDTA and shows secondary and tertiary structures, heme reincorporation in the cavity, and at least 59% of activity. Melezitose stabilized the refolded Ca2+-depleted protein and induced a more complex mechanism for heme disruption. The effect of sorbitol and trehalose were mainly characterized by an increase in the temperature of unfolding.  相似文献   

10.
Torrent J  Connelly JP  Coll MG  Ribó M  Lange R  Vilanova M 《Biochemistry》1999,38(48):15952-15961
To investigate the characteristics of the postulated carboxy terminal chain-folding initiation site in bovine pancreatic ribonuclease A (RNase A) (residues 106-118), important in the early stages of the folding pathway, we have engineered by site-directed mutagenesis a set of 14 predominantly conservative hydrophobic variants of the protein. The stability of each variant has been compared by pressure and temperature-induced unfolding, monitored by fourth derivative UV absorbance spectroscopy. Apparently simple two-state, reversible unfolding transitions are observed, suggesting that the disruption of tertiary structure of each protein at high pressure or temperature is strongly cooperative. Within the limits of the technique, we are unable to detect significant differences between the two processes of denaturation. Both steady-state kinetic parameters for the enzyme reaction and UV CD spectra of each RNase A variant indicate that truncation of hydrophobic side chains in this region has, in general, little or no effect on the native structure and function of the enzyme. Furthermore, the decreases in free energy of unfolding upon pressure and thermal denaturation of all the variants, particularly those modified at residues 106 and 108, suggest that the hydrophobic residues and side chain packing interactions of this region play an important role in maintaining the conformational stability of RNase A. We also demonstrate the potential of Tyr115 replacement by Trp as a non-destabilizing fluorescence probe of conformational changes local to the region.  相似文献   

11.
Trehalose has been widely used to stabilize cellular structures such as membranes and proteins. The effect of trehalose on the stability of the enzyme cutinase was studied. Thermal unfolding of cutinase reveals that trehalose delays thermal unfolding, thus increasing the temperature at the midpoint of unfolding by 7.2 degrees . Despite this stabilizing effect, trehalose also favors pathways that lead to irreversible denaturation. Stopped-flow kinetics of cutinase folding and unfolding was measured and temperature was introduced as experimental variable to assess the mechanism and thermodynamics of protein stabilization by trehalose. The main stabilizing effect of trehalose was to delay the rate constant of the unfolding of an intermediate. A full thermodynamic analysis of this step has revealed that trehalose induces the phenomenon of entropy-enthalpy compensation, but the enthalpic contribution increases more significantly leading to a net stabilizing effect that slows down unfolding of the intermediate. Regarding the molecular mechanism of stabilization, trehalose increases the compactness of the unfolded state. The conformational space accessible to the unfolded state decreases in the presence of trehalose when the unfolded state acquires residual native interactions that channel the folding of the protein. This residual structure results into less hydrophobic groups being newly exposed upon unfolding, as less water molecules are immobilized upon unfolding.  相似文献   

12.
Hydration state change of proteins upon unfolding in sugar solutions   总被引:2,自引:0,他引:2  
Change in hydration number of proteins upon unfolding, Deltan, was obtained from the analysis of thermal unfolding behavior of proteins in various sugar solutions with water activity, a(W), varied. By applying the reciprocal form of Wyman-Tanford equation, Deltan was determined to be 133.9, 124.1, and 139.2 per protein molecule for ribonuclease A at pH=5.5, 4.2, and 2.8, respectively, 201.4 for lysozyme at pH=5.5, and 100.1 for alpha-chymotripnogen A at pH=2.0. Among the sugars tested, reducing sugars gave the lower apparent Deltan as compared with nonreducing sugars probably because of the direct interaction of reducing terminal with amino group of proteins at a high temperature. From the knowledge of Deltan, a new thermodynamic model for protein stability was proposed with explicit consideration for hydration state change of protein upon unfolding. From this model, the contribution of a(W) was proven to be always positive for stabilization of proteins and its effect is not negligible depending on Deltan and a(W).  相似文献   

13.
Lee J  Shin S 《Biophysical journal》2001,81(5):2507-2516
We have studied the mechanism of formation of a 16-residue beta-hairpin from the protein GB1 using molecular dynamics simulations in an aqueous environment. The analysis of unfolding trajectories at high temperatures suggests a refolding pathway consisting of several transient intermediates. The changes in the interaction energies of residues are related with the structural changes during the unfolding of the hairpin. The electrostatic energies of the residues in the turn region are found to be responsible for the transition between the folded state and the hydrophobic core state. The van der Waals interaction energies of the residues in the hydrophobic core reflect the behavior of the radius of gyration of the core region. We have examined the opposing influences of the protein-protein (PP) energy, which favors the native state, and the protein-solvent (PS) energy, which favors unfolding, in the formation of the beta-hairpin structure. It is found that the behavior of the electrostatic components of PP and PS energies reflects the structural changes associated with the loss of backbone hydrogen bonding. Relative changes in the PP and PS van der Waals interactions are related with the disruption of the hydrophobic core of a protein. The results of the simulations support the hydrophobic collapse mechanism of beta-hairpin folding.  相似文献   

14.
Dee D  Pencer J  Nieh MP  Krueger S  Katsaras J  Yada RY 《Biochemistry》2006,45(47):13982-13992
A zymogen-derived protein, pepsin, appears to be incapable of folding to the native state without the presence of the prosegment. To better understand the nature of the irreversible denaturation of pepsin, the present study reports on the characterization of the stability and low-resolution tertiary and secondary structures of native, alkaline unfolded and acid refolded porcine pepsin. Through a combination of small-angle neutron scattering (SANS), CD, and DSC, acid refolded pepsin (Rp) was shown to have secondary and tertiary structures intermediate between the alkaline denatured and native forms but was found to be thermodynamically stable relative to the native state. It was also observed that the acid refolded state of pepsin was dependent on the protein concentration during refolding because CD and SANS data revealed that both the secondary and tertiary structures of concentrated-refolded pepsin (>10 mg/mL) (CRp) were native-like, in contrast to the intermediate nature of Rp, refolded under dilute concentration (<10 mg/mL). Despite a native-like conformation, CRp was more stable and had substantially reduced activity compared to that of the native state, suggesting that the protein was misfolded. It is proposed that the stable but misfolded, acid-refolded states are evidence that pepsin in its native conformation was metastable. Furthermore, the disruption of the active site cleft in the denatured states could be discerned by modeling of the SANS data.  相似文献   

15.
A theory of equilibrium denaturation of proteins is suggested. According to this theory, a cornerstone of protein denaturation is disruption of tight packing of side chains in protein core. Investigation of this disruption is the object of this paper. It is shown that this disruption is an "all-or-none" transition (independent of how compact is the denatured state of a protein and independent of the protein-solvent interactions) because expansion of a globule must exceed some threshold to release rotational isomerization of side chains. Smaller expansion cannot produce entropy compensation of nonbonded energy loss; this is the origin of a free-energy barrier (transition state) between the native and denatured states. The density of the transition state is so high that the solvent cannot penetrate into protein in this state. The results obtained in this paper make it possible to present in the following paper a general phase diagram of protein molecule in solution.  相似文献   

16.
HIV-1 protease is responsible for the maturation of infective virions, and is one of the targets of drugs against AIDS. It is an aspartic protease with a 99-resiude polypeptide dimerized. Previous study with fluorescence and sedimentation measurements revealed that the protein was unfolded with concomitant dissociation of the subunits. In the present study, we investigated urea-dependent unfolding of HIV-1 protease with CD and SAXS in order to monitor the secondary structure and the global size and shape of the molecule, respectively. The unfolding parameters estimated by both methods were almost the same, indicating that the dissociation of the subunits accompanied the disruption of their internal structures. This is in line with the previous results, and moreover some residual structures were suggested to be present in the unfolded state. The distinct difference, as compared with the unfolding of pepsin, was interpreted from the point of their molecular architectures.  相似文献   

17.
Feller G  d'Amico D  Gerday C 《Biochemistry》1999,38(14):4613-4619
The thermal stability of the cold-active alpha-amylase (AHA) secreted by the Antarctic bacterium Alteromonas haloplanctis has been investigated by intrinsic fluorescence, circular dichroism, and differential scanning calorimetry. It was found that this heat-labile enzyme is the largest known multidomain protein exhibiting a reversible two-state unfolding, as demonstrated by the recovery of DeltaHcal values after consecutive calorimetric transitions, a DeltaHcal/DeltaHeff ratio close to unity, and the independence of unfolding thermodynamic parameters of scan rates. By contrast, the mesophilic alpha-amylases investigated here (from porcine pancreas, human salivary glands, yellow meal beetle, Bacillus amyloliquefaciens, and Bacillus licheniformis) unfold irreversibly according to a non-two-state mechanism. Unlike mesophilic alpha-amylases, the melting point of AHA is independent of calcium and chloride binding while the allosteric and structural functions of these ions are conserved. The thermostability of AHA at optimal conditions is characterized by a Tm of 43.7 degrees C, a DeltaHcal of 238 kcal mol-1, and a DeltaCp of 8.47 kcal mol-1 K-1. These values were used to calculate the Gibbs free energy of unfolding over a wide range of temperatures. This stability curve shows that (a) the specific DeltaGmax of AHA [22 cal (mol of residue)-1] is 4 times lower than that of mesophilic alpha-amylases, (b) group hydration plays a crucial role in the enzyme flexibility at low temperatures, (c) the temperature of cold unfolding closely corresponds to the lower limit of bacterial growth, and (d) the recombinant heat-labile enzyme can be expressed in mesophilic hosts at moderate temperatures. It is also argued that the cold-active alpha-amylase has evolved toward the lowest possible conformational stability of its native state.  相似文献   

18.
The conformational stability of the homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase (FabG) was determined by guanidinium chloride-induced isothermal and thermal denaturation. The reversible unfolding transitions were monitored by intrinsic fluorescence, circular dichroism (CD) spectroscopy and by measuring the enzyme activity of FabG. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with unfolding of the protein. The data confirm the simple A(4) <--> 4A model of unfolding, based on the corroboration of CD data by fluorescence transition and similar Delta G estimation for denaturation curves obtained at four different concentration of the FabG. Denaturation is well described by the linear extrapolation model for denaturant-protein interactions. In addition, the conformational stability (Delta G(s)) as well as the Delta C(p) for the protein unfolding is quite high, 22.68 kcal/mole and 5.83 kcal/(mole K), respectively, which may be a reflection of the relatively large size of the tetrameric molecule (Mr 120, 000) and a large buried hydrophobic core in the folded protein. This study provides a prototype for determining conformational stability of other members of the short-chain alcohol dehydrogenase/reductase superfamily of proteins to which PfFabG belongs.  相似文献   

19.
In the present study the thermal unfolding of amicyanin has been addressed using differential scanning calorimetry, fluorescence emission, optical density, circular dichroism and electron paramagnetic resonance. The combined use of these techniques has allowed us to assess, during unfolding of the protein, its global conformational changes in relationship to the local structural modifications occurring in the copper environment and close to the fluorescent chromophore Trp46 of the protein. The thermal transition from the native to the denatured state is on the whole irreversible and occurs in the temperature range between 65 and 72 degrees C, depending on the scan rate and technique used. Amicyanin as a whole shows a complex unfolding pathway, which has been described in terms of a three-step model: N <--> U --> F1 --> F2. According to this model, in the first step the native state of the protein (N) goes reversibly to the unfolded state (U), in the second one U goes irreversibly to F1 and, finally, the state F2 is irreversibly reached in the third step. Kinetic factors prevent the experimental separation of these steps. Nevertheless, the comparison of the data obtained with the different experimental techniques testifies the presence, within the unfolding pathway, of some intermediate states, although not sufficiently long-lived to allow a detailed characterization. A first intermediate transient state has been identified around 68 degrees C, whereas a second one can be related to conformational changes that involve the copper environment. Finally, an exothermal phenomenon, caused by irreversible rearrangements of the melted polypeptide chains, is evidenced. In addition, according to the EPR findings, the type 1 copper ion, which is four-fold coordinated by two N and two S atoms in a distorted tetrahedron in the native state of the protein, shows type 2 features after denaturation. A mathematical model simulating the unfolding Cp(exc) profile has been also developed.  相似文献   

20.
The equilibrium stability and conformational unfolding kinetics of the [C40A, C95A] and [C65S, C72S] mutants of bovine pancreatic ribonuclease A (RNase A) have been studied. These mutants are analogues of two nativelike intermediates, des[40-95] and des[65-72], whose formation is rate-limiting for oxidative folding and reductive unfolding at 25 degrees C and pH 8.0. Upon addition of guanidine hydrochloride, both mutants exhibit a fast conformational unfolding phase when monitored by absorbance and fluorescence, as well as a slow phase detected only by fluorescence which corresponds to the isomerizations of Pro93 and Pro114. The amplitudes of the slow phase indicate that the two prolines, Pro93 and Pro114, are fully cis in the folded state of the mutants and furthermore that the 40-95 disulfide bond is not responsible for the quenching of Tyr92 fluorescence observed in the slow unfolding phase, contrary to an earlier proposal [Rehage, A., and Schmid, F. X. (1982) Biochemistry 21, 1499-1505]. The ratio of the kinetic unfolding m value to the equilibrium m value indicates that the transition state for conformational unfolding in the mutants exposes little solvent-accessible area, as in the wild-type protein, indicating that the unfolding pathway is not dramatically altered by the reduction of the 40-95 or 65-72 disulfide bond. The stabilities of the folded mutants are compared to that of wild-type RNase A. These stabilities indicate that the reduction of des[40-95] to the 2S species is rate-limited by global conformational unfolding, whereas that of des[65-72] is rate-limited by local conformational unfolding. The isomerization of Pro93 may be rate-limiting for the reduction of the 40-95 disulfide bond in the native protein and in the des[65-72] intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号