首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we determined the concentration of 9 trace elements (As, Cd, Cu, Hg, Mn, Mo, Pb, Se and Zn) in whole blood of children (n = 100, 64 girls, 36 boys and median age: 36 months) using inductively coupled plasma mass spectrometry (ICP-MS). The proportion of children potentially deficient in essential elements or poisoned by toxic elements was evaluated. The aging effects on the concentration of these elements were also investigated. The median values were 3.17 μg/L (As), 0.15 μg/L (Cd), 1.1 mg/L (Cu), 2.1 μg/L (Hg), 10.4 μg/L (Mn), 17.7 μg/L (Mo), 8.7 μg/dL (Pb), 10.7 μg/L (Se) and 5.0 mg/L (Zn). The concentration of many elements (As, Cd, Hg, Mn, Pb and Zn) showed significant age variations but not sex influence. Regarding levels of the essential elements (Cu, Mn, Mo, Se and Zn), B-Cu, B-Mn, B-Se and B-Zn were in the normal range, whereas exceeded levels were observed for B-Mo. None of these children was deficient in essential elements. Except B-Cd, all toxic elements showed exceeded blood levels. The proportion of children potentially poisoned by toxic elements varies from 10% (n = 10) to 95% (n = 95) and depends on toxic element: 95% for As, 10% for Hg and 35% for Pb. The main health concerns emerging from this study are the high As, Hg and Pb exposures of the Kinshasan children requiring further documentation, corrective actions and the implementation of appropriate regulations.  相似文献   

2.
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and the yields were 30.0-32.2% with that of chitosan C120 being the highest. The degree of N-deacetylation of chitosans (83.3–93.3%) increased but the average molecular weight (483–526 kDa) decreased with the prolonged reaction time. Crab chitosans showed lower lightness and WI values than purified chitin, chitosans CC and CS but higher than crude chitin. With the prolonged reaction time, the nitrogen (8.9–9.5%), carbon (42.2–45.2%) and hydrogen contents (7.9–8.6%) in chitosans prepared consistently increased whereas N/C ratios remained the same (0.21). Crab chitosans prepared showed a melting endothermic peak at 152.3–159.2 °C. Three chitosans showed similar microfibrillar crystalline structure and two crystalline reflections at 2θ = 8.8–9.0° and 18.9–19.1°. Overall, the characteristics of three crab chitosans were unique and differed from those of chitosan CC and CS as evidenced by the element analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction patterns.  相似文献   

3.
The effect of temperature on the biology of Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae) is well understood under constant temperature conditions, but less so under more natural, fluctuating conditions. Herein we studied the influence of fluctuating temperatures on biological parameters of V. canescens. Parasitized fifth-instar larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) were reared individually in incubators at six fluctuating temperature regimes (15–19.5 °C with a mean of 17.6 °C, 17.5–22.5 °C with a mean of 19.8 °C, 20–30 °C with a mean of 22.7 °C, 22.5–27.5 °C with a mean of 25 °C, 25.5-32.5 °C with a mean of 28.3 °C and 28.5–33 °C with a mean of 30 °C) until emergence and death of V. canescens adults. Developmental time from parasitism to adult eclosion, adult longevity and survival were recorded at each fluctuating temperature regime. In principle, developmental time decreased with an increase of the mean temperature of the fluctuating temperature regime. Upper and lower threshold temperatures for total development were estimated at 34.9 and 6.7 °C, respectively. Optimum temperature for development and thermal constant were 28.6 °C and 526.3 degree days, respectively. Adult longevity was also affected by fluctuating temperature, as it was significantly reduced at the highest mean temperature (7.0 days at 30 °C) compared to the lowest one (29.4 days at 17.6 °C). Survival was low at all tested fluctuating temperatures, apart from mean fluctuating temperature of 25 °C (37%). Understanding the thermal biology of V. canescens under more natural conditions is of critical importance in applied contexts. Thus, predictions of biological responses to fluctuating temperatures may be used in population forecasting models which potentially influence decision-making in IPM programs.  相似文献   

4.
The concentrations of heavy metals in the roots, rhizomes, stems and leaves of the aquatic macrophyte Phragmites australis (common reed), and in the corresponding water and sediment samples from the mouth area of the Imera Meridionale River (Sicily, Italy), were investigated to ascertain whether plant organs are characterized by differential accumulation, and to test the suitability of the various organs for heavy metal biomonitoring of water and soil. Heavy metals considered were Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn. Results showed that belowground organs were the primary areas of metal accumulation. In particular, metal concentrations in plant organs decreased in the order of root > rhizome  leaf > stem. All four organs showed significant differences in concentration for Cr, Hg, Mn, Zn, thus suggesting low mobility from roots to rhizomes and to aboveground organs. Although the organs followed different decreasing trends of metal concentration, the trend Mn > Zn > Pb > Cu was found in each plant organ. Mn showed the highest concentrations in all organs whereas the lowest concentrations regarded Cd and Cr in the belowground and aboveground organs, respectively. The toxic threshold was exceeded by Cr in roots, rhizomes and leaves, Mn in roots and leaves, Ni in roots. The highest average concentrations were found as follows: Cd, Hg, Pb, Zn in root, Cr, Mn, Ni in sediment, Cu in water. Positive linear relationships were found between heavy metal concentrations in all plant organs and those in water and sediment, thus indicating the potential use of such organs for pollution monitoring of water and sediment. Advantages of using plant species as biomonitors, especially Phragmites australis, were also discussed.  相似文献   

5.
A bench- and a pilot-scale anaerobic/aerobic system were evaluated for the treatment of high strength tomato-processing wastewater. The pilot-scale anaerobic tank achieved better prefermentation of organic carbon and nitrogen than the bench-scale system, although overall system performance was comparable with more than 99% SBOD removal and 97% SCOD removal. Hydraulic retention time (HRT) and temperature effects were studied in the bench-scale system. Increase of anaerobic HRT from 0.25 day to 0.5 day favored prefermentation and a better effluent quality was achieved, as demonstrated by reduction in TSS concentrations from 66 mg/L to 24 mg/L, SCOD from 103 mg/L to 78 mg/L and SBOD from 8 mg/L to 6 mg/L, respectively. Specific oxygen uptake rate (SOUR) increased from 0.15–0.23 mg O2/mg VSS day at 25 °C to 0.67–1.24 mg O2/mg VSS day at 32 °C. Settling characteristics deteriorated from sludge volume index (SVI) of 24–131 mL/g at 25 °C to 115–173 mL/g at 32 °C. Sludge yield decreased from 0.14 g VSS/g COD at 25 °C to 0.098 g VSS/g COD at 32 °C.  相似文献   

6.
A 30 day feeding trial was conducted using a freshwater fish, Labeo rohita (rohu), to determine their thermal tolerance, oxygen consumption and optimum temperature for growth. Four hundred and sixteen L. rohita fry (10 days old, 0.385±0.003 g) were equally distributed between four treatments (26, 31, 33 and 36 °C) each with four replicates for 30 days. Highest body weight gain and lowest feed conversion ratio (FCR) was recorded between 31 and 33 °C. The highest specific growth rate was recorded at 31 °C followed by 33 and 26 °C and the lowest was at 36 °C. Thermal tolerance and oxygen consumption studies were carried out after completion of growth study to determine tolerance level and metabolic activity at four different acclimation temperatures. Oxygen consumption rate increased significantly with increasing acclimation temperature. Preferred temperature decided from relationship between acclimation temperature and Q10 values were between 33 and 36 °C, which gives a better understanding of optimum temperature for growth of L. rohita. Critical thermal maxima (CTMax) and critical thermal minima (CTMin) were 42.33±0.07, 44.81±0.07, 45.35±0.06, 45.60±0.03 and 12.00±0.08, 12.46±0.04, 13.80±0.10, 14.43±0.06, respectively, and increased significantly with increasing acclimation temperatures (26, 31, 33 and 36 °C). Survival (%) was similar in all groups indicating that temperature range of 26–36 °C is not fatal to L. rohita fry. The optimum temperature range for growth was 31–33 °C and for Q10 values was 33–36 °C.  相似文献   

7.
《Process Biochemistry》2014,49(3):357-364
A yeast cell-free enzyme system containing an intact fermentation assembly and that is capable of bio-ethanol production at elevated temperatures in the absence of living cells was developed to address the limitations associated with conventional fermentation processes. The presence of both yeast glycolytic and fermentation enzymes in the system was verified by SDS-PAGE and LC–MS/MS Q-TOF analyses. Quantitative measurements verified sufficient quantities of the co-factors ATP (1.8 mM) and NAD+ (0.11 mM) to initiate the fermentation process. Bio-ethanol was produced at a broad temperature range of 30–60 °C but was highly specific to a pH range of 6.0–7.0. The final bio-ethanol production at 30, 40, 50, and 60 °C was 3.37, 3.83, 1.94, and 1.60 g/L, respectively, when a 1% glucose solution was used, and the yield increased significantly with increasing cell-free enzyme concentrations. A comparative study revealed better results for the conventional fermentation system (4.46 g/L) at 30 °C than the cell-free system (3.37 g/L); however, the efficacy of the cell-free system increased with temperature, reaching a maximum (3.83 g/L) at 40 °C, at which the conventional system could only produce 0.48 g/L bio-ethanol. Successful bio-ethanol production using a single yeast cell-based enzyme system at higher temperatures will lead to the development of novel strategies for efficient bio-ethanol production through SSF.  相似文献   

8.
ProjectTo understand the role of major, minor, and trace elements in the etiology of bone diseases including osteoporosis, it is necessary to determine the normal levels and age-related changes of bone chemical elements.ProcedureThe effect of age and gender on 38 chemical element contents in intact iliac crest of 84 apparently healthy 15–55 years old women (n=38) and men (n=46) was investigated by neutron activation analysis.ResultsMean values (M±SEM) for mass fraction (on dry weight basis) of Ca, Cl, Co, Fe, K, Mg, Mn, Na, P, Rb, Sr, and Zn for both female and male taken together were Ca – 169±3 g/kg, Cl – 1490±43 mg/kg, Co – 0.0073±0.0024 mg/kg, Fe – 177±24 mg/kg, K – 1820±79 mg/kg, Mg – 1840±48 mg/kg, Mn – 0.316±0.013 mg/kg, Na – 4970±87 mg/kg, P – 79.7±1.5 g/kg, Rb – 1.89±0.22 mg/kg, Sr – 312±15 mg/kg, and Zn – 65.9±3.4 mg/kg, respectively. The upper limit of mean contents of Cs, Eu, Hg, Sb, Sc, and Se were Cs≤0.09 mg/kg, Eu≤0.005 mg/kg, Hg≤0.005 mg/kg, Sb≤0.004 mg/kg, Sc≤0.001 mg/kg, and Se≤0.1 mg/kg, respectively. In all bone samples the contents of Ag, As, Au, Ba, Br, Cd, Ce, Cr, Gd, Hf, La, Lu, Nd, Sm, Ta, Tb, Th, U, Yb, and Zr were under detection limits.ConclusionsThe Ca, Mg, and P contents decrease with age, regardless of gender. Higher Ca, Mg, P, and Sr mass fractions as well as lower Fe content are typical of female iliac crest as compared to those in male bone.  相似文献   

9.
Heat stress is a major factor limiting the growth of cool-season grasses in warm climatic regions by affecting many physiological processes, including protein metabolism. Protein degradation often occurs with increasing temperatures, but certain specific proteins such as heat shock proteins (HSPs) may be induced or enhanced in their expression under supraoptimal temperatures. The objectives of this study were to determine the critical temperature that causes protein induction or degradation in two Agrostis grass species differing in heat tolerance and to compare protein profiles between the two species under different temperature regimes. Plants of heat-tolerant Agrostis scabra and two cultivars of heat-sensitive Agrostis stolonifera (‘L-93’ and ‘Penncross’) were exposed to constant day/night temperatures of 20, 30, 35, 40, or 45 °C for 14 d. Leaf photochemical efficiency (Fv/Fm), chlorophyll and carotenoid contents, and soluble protein content declined with increasing temperatures. The decreases were the least severe for A. scabra, intermediate for ‘L-93’, and the most severe for ‘Penncross’, indicating interspecific and intraspecific variations in heat tolerance in Agrostis species. Protein degradation was observed at 30–45 °C in both cultivars of A. stolonifera, and at 40–45 °C in A. scabra.HSPs were induced or enhanced at 35–45 °C in ‘L-93’ and A. scabra, and at 40–45 °C in ‘Penncross’. Immunoblotting also revealed stronger expressions of HSP60 and HSP70 in A. scabra or ‘L-93’ than in ‘Penncross’ at 35–45 °C after 3 d. The results suggested the superior heat tolerance of Agrostis grass species and cultivars could be attributed to the early induction of HSPs, particularly small molecular weight (23 kDa), at a lower level of heat stress and the maintenance of protein thermostability, particularly high-molecular weight proteins (83 kDa and large units of Rubisco).  相似文献   

10.
《Process Biochemistry》2014,49(8):1288-1296
This study details on cloning and characterization of Cu,Zn superoxide dismutase (Ca–Cu,Zn SOD) from a medicinally important plant species Curcuma aromatica. Ca–Cu,Zn SOD was 692 bp with an open reading frame of 459 bp. Expression of the gene in Escherichia coli cells followed by purification yielded the enzyme with Km of 0.047 ± 0.008 μM and Vmax of 1250 ± 24 units/mg of protein. The enzyme functioned (i) across a temperature range of −10 to +80 °C with temperature optima at 20 °C; and (ii) at pH range of 6–9 with optimum activity at pH 7.8. Ca–Cu,Zn SOD retained 50% of the maximum activity after autoclaving, and was stable at a wide storage pH ranging from 3 to 10. The enzyme tolerated varying concentrations of denaturating agent, reductants, inhibitors, trypsin, was fairly resistant to inactivation at 80 °C for 180 min (kd, 6.54 ± 0.17 × 10−3 min−1; t1/2, 106.07 ± 2.68 min), and had midpoint of thermal transition (Tm) of 70.45 °C. The results suggested Ca–Cu,Zn SOD to be a kinetically stable protein that could be used for various industrial applications.  相似文献   

11.
Cadmium (Cd) is believed to be one of the most abundant and ubiquitously distributed toxins in the aquatic system. This metal is released to the aquatic environment from both anthropogenic sources, such as industrial, agricultural and urban effluents as well as natural sources, such as rocks and soils. Otherwise, the temperature increase of water bodies, which has been observed due to global climatic changes, has been shown to increase Cd toxicity for several aquatic animal species including fish. In the present study, Nile tilapia, Oreochromis niloticus (L.), (26.0±0.38 g) were reared at 20, 24, 28, or 32 °C and exposed to 0.0 or 0.5 mg Cd/L for 8 weeks to investigate effects of water temperature, Cd toxicity and their interaction on fish performance as well as metallothionein (MT) and Cd distribution in different fish organs. It was found that fish reared in Cd-free group at 28 °C showed the optimum growth and feed intake, while Cd-exposed fish showed low growth and feed intake irrespective to water temperature. A synergetic relationship between water temperature and Cd toxicity was observed where Cd toxicity increased as water temperature increased and the worse growth was obtained in Cd-exposed fish reared at 32 °C. Additionally, the highest Cd residues in different fish organs were detected in Cd-exposed fish reared at 32 °C. Similarly, MT concentrations in different fish organs increased as water temperature increased especially in Cd-exposed fish groups. A high positive correlation between MT and Cd concentrations in fish organs was detected. The distribution of MT and Cd levels was in the order of liver>kidney>gills>muscles. The present study revealed that the optimum water temperature suitable for Nile tilapia growth is 28 °C. Additionally, Cd exposure had a deteriorate effect on the growth and health of Nile tilapia. This hazardous effect increased as water temperature increased. Further, liver and kidney were the prime sites of Cd accumulation, while Cd load in the muscles was the lowest as compared to the other investigated organs.  相似文献   

12.
The effects of temperature on the development (egg–adult emergence) of Gonatocerus morgani Triapitsyn, a newly-described parasitoid of Homalodisca vitripennis (Germar), were determined at 14.8, 18.7, 23.5, 26.9, 28.7, 30.4, 32.8, and 33.8 °C in the laboratory. Survival rate (percent adult emergence from parasitized host eggs) varied significantly among the experimental temperatures, with the highest (59%) and lowest (0%) occurring at 30.4 and 33.8 °C, respectively. The survival rates (%) were fitted with a polynomial model to describe a temperature-dependent pattern. Developmental rates (1/d) across seven temperatures were fitted with the nonlinear Briere model, which estimated the lower threshold to be 8.06 °C, the optimal temperature to be 29.22 °C, and the upper threshold to be 33.49 °C. A linear model fitted to developmental rates at 14.8–28.7 °C indicated that 189.75 degree-days above the lower threshold of 9.71 °C were required to complete development. A simulation model of G. morgani adult emergence was constructed to predict daily counts over the entire range of constant temperatures by incorporating the survival rate model, the Briere model, and the Weibull model. In outdoor validation, a degree-day model for predicting adult emergence showed ?2 d differences between prediction and observation. Based on the observed temperature requirement, the insect could complete thirteen to sixteen generations per year in southern California, depending on weather and location.  相似文献   

13.
Temperature compensation in whole-animal metabolic rate is one of the responses thought, controversially, to characterize insects from low temperature environments. Temperature compensation may either involve a change in absolute values of metabolic rates or a change in the slope of the metabolic rate – temperature relationship. Moreover, assessments of compensation may be complicated by animal responses to fluctuating temperatures. Here we examined whole animal metabolic rates, at 0 °C, 5 °C, 10 °C and 15 °C, in caterpillars of the sub-Antarctic moth, Pringleophaga marioni Viette (Tineidae), following one week acclimations to 5 °C, 10 °C and 15 °C, and fluctuating temperatures of 0–10 °C, 5–15 °C, and 10–20 °C. Over the short term, temperature compensation was found following acclimation to 5 °C, but the effect size was small (3–14%). By comparison with caterpillars of 13 other lepidopteran species, no effect of temperature compensation was present, with the relationship between metabolic rate and temperature having a Q10 of 2 among species, and no effect of latitude on temperature-corrected metabolic rate. Fluctuating temperature acclimations for the most part had little effect compared with constant temperatures of the same mean value. Nonetheless, fluctuating temperatures of 5–15 °C resulted in lower metabolic rates at all test temperatures compared with constant 10 °C acclimation, in keeping with expectations from the literature. Absence of significant responses, or those of large effect, in metabolic rates in response to acclimation, may be a consequence of the unpredictable temperature variation over the short-term on sub-Antarctic Marion Island, to which P. marioni is endemic.  相似文献   

14.
Molasses fermentation performance by both a cryotolerant and a thermophilic yeast (strain AXAZ-1) isolated from grapes in Greece was evaluated in an extremely wide temperature range (3–40 °C). Sequence analysis of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions assigned isolate to Saccharomyces cerevisiae. Restriction fragment length polymorphism of the mitochondrial DNA showed that strain AXAZ-1 is genetically divergent compared to other wild strains of Greek origin or commercial yeast starters. Yeast cells growing planktonically were capable of fermentation in a wide temperature spectrum, ranging from 3 °C to 38 °C. Immobilization of yeast on brewer’s spent grains (BSG) improved the thermo-tolerance of the strain and enabled fermentation at 40 °C. Time to complete fermentation with the immobilized yeast ranged from 20 days at 3 to 38 h at 40 °C. The daily ethanol productivity reached maximum (58.1 g/L) and minimum (2.5 g/L) levels at 30 and 3 °C, respectively. The aroma-related compounds’ profiles of immobilized cells at different fermentation temperatures were evaluated by using solid phase microextraction (SPME) gas chromatography–mass spectrometry (GC–MS). Molasses fermentation resulted in a high quality fermentation product due to the low concentrations of higher and amyl alcohols at all temperatures tested. Strain AXAZ-1 is very promising for the production of ethanol from low cost raw materials, as it was capable to perform fermentations of high ethanol concentration and productivities in both low and high temperatures.  相似文献   

15.
The effects of heating rate (HR) on the performance of two-phase (batch followed by fed-batch) high cell-density cultivations (HCDC) of E. coli DH5α for the production of plasmid DNA (pDNA) were investigated. Optimal temperatures for the HCDC, as selected from shake flask experiments at constant temperatures between 30 and 45 °C, were 35 °C for biomass accumulation in the batch phase and 42 °C for inducing pDNA replication during the fed-batch. In HCDC the temperature was increased at HR of 0.025, 0.05, 0.10 and 0.25 °C/min and the performance of the cultivations were compared to a HCDC run at constant temperature (35 °C). Compared to constant 35 °C, heat-induced HCDC accumulated up to 50% less biomass within the same cultivation time and acetate and glucose accumulated to high concentrations. The overall specific productivity (QP) and average pDNA yield (Yp/x) in HCDC at 35 °C were 0.22 ± 0.02 mg/g h and 5.3 ± 0.00 mg/g, respectively. Such parameters were maximum at a HR of 0.05 °C/min, reaching 0.56 ± 0.06 mg/g h and 9.3 ± 0.6 mg/g, respectively. At HR above 0.5 °C/min, Yp/x remained relatively constant, whereas QP tended to decrease. The supercoiled pDNA fraction remained around 80% at all HR. Bioreactors were equipped with a capacitance/conductivity probe. In all cases biomass concentration correlated closely with the capacitance signal and acetate and glucose accumulation was accompanied by an increase in the conductivity signal. Thus, it was possible to calculate acetate and biomass concentrations, as well as μ, from online capacitance and conductivity signals using estimators. Altogether, in this study it was shown that it is possible to maximize pDNA productivity by choosing an appropriate HR and that relevant parameters can be estimated by capacitance/conductivity signals, which are useful for better process control and development.  相似文献   

16.
A bacterial lipase from Arthrobacter sp. (ABL: IIIM Jammu, India strain, MTCC No. 5125) has been immobilized on non-magnetic (Type A) and magnetic (Type B) supports derived from copolymerization of 3-aminopropyltriethoxysilane and tetraethylorthosilicate. Immobilized ABL presented 21–34 mg/g protein binding providing 30–75 units/g activity in Type A non-magnetic composites and 24–45 mg/g protein binding providing 35–90 units/g activity with Type B supports containing magnetic particles. Immobilized ABL preparations have shown enhanced stability at pH 5–9 and temperature up to 70 °C whereas free ABL is unstable under these conditions. Improved hydrolytic conversion as well as enantioselectivity were observed with acyl fluoxetine intermediate (ethyl 3-hydroxy-3-phenylpropanoate alkyl acylates) and chiral auxiliaryacyl 1-phenyl ethanol using immobilized ABL derivatives (ee ~99%; 3–4-fold increase in E-values) as compared to ABL enzyme/cells (ee 93–98%). Introduction of magnetic particles in these supports has led to easier separation process with high product recovery yields.  相似文献   

17.
Thermoregulatory behavior in temperate bats is influenced by gender, food availability, ambient temperature and reproduction. Ecologically and morphologically similar bat species (Myotis bechsteinii, M. nattereri, and Plecotus auritus; Vespertilionidae) facing similar diurnal conditions should therefore not differ in their thermoregulatory behavior. Identified day roosts (n = 23) of radio-tagged bats (n = 30) were spread over an area of 33.1 ha, but ambient temperature did not differ between roosting sites. Furthermore, there was no significant difference in cardinal direction, roost height, canopy coverage, and breast height diameter between day roosts used by the three species. Minimum roost temperatures and isolation values, however, differed significantly between our species with lowest values in P. auritus. The range of skin temperatures (min–max) recorded by temperature-sensitive transmitters was not species-specific with the lowest ranges in late pregnancy (mean ± SD: 7.1 ± 1.1 °C) and highest in post-lactation (mean ± SD: 13.1 ± 1.1 °C). The minimum skin temperature, however, was species-specific with the lowest values in P. auritus (mean ± SD: 20.2 ± 1.1 °C), intermediate in M. nattereri (mean ± SD: 23.4 ± 1.0 °C), and the highest in M. bechsteinii (mean ± SD: 26.8 ± 1.0 °C). Species-specific usage of energy-saving mechanisms might represent an important niche differentiation of species. Different mechanisms might allow, e.g. one species to occupy colder roosts with higher temperature variations or to shorten foraging times due to distinct thermoregulatory behavior.  相似文献   

18.
A thermostable and pH-stable laccase from Klebsiella pneumoniae was cloned and expressed in Escherichia coli. The recombinant laccase (rLac) achieved a specific activity of 7.12 U/mg after purification by Ni-affinity chromatography. Optimal enzyme activity was observed at pH 4.0 and 35 °C for 2,2′-azino-bis (3-ethylbenzthiazoline sulfonic acid) (ABTS) oxidization and pH 8.0 and 70 °C for 2,6-dimethoxyphenol (2,6-DMP) oxidization. Thermostability and pH stability studies showed that the rLac was stable over the range of 30–70 °C and pH 5.0–9.0 using 2,6-DMP as substrate. Circular dichroism analysis suggested that the secondary structure of the rLac mainly consisted of α-helix that played a vital role in maintaining laccase activity and revealed the potential mechanisms for the changes in laccase activity under varying pHs (3.0–11.0) and temperatures (20–90 °C). Finally, the rLac could decolorize the tested dyes with high decolorization efficiency.  相似文献   

19.
Ten different seaweed species were compared on the basis of lead uptake at different pH conditions. The brown seaweed, Turbinaria conoides, exhibited maximum lead uptake (at pH 4.5) and hence was selected for further studies. Sorption isotherms, obtained at different pH (4–5) and temperature (25–35 °C) conditions were fitted using Langmuir and Sips models. According to the Langmuir model, the maximum lead uptake of 439.4 mg/g was obtained at optimum pH (4.5) and temperature (30 °C). The Sips model better described the sorption isotherms with high correlation coefficients at all conditions examined. Various thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated indicating that the present system was a spontaneous and endothermic process. Through potentiometric titrations, number of binding sites (carboxyl groups) and pK1 were determined as 4.1 mmol/g and 4.4, respectively. The influence of co-ions (Na+, K+, Mg2+ and Ca2+) on lead uptake was well pronounced in the case of divalent ions compared to monovalent ions. The solution of 0.1 M HCl successfully eluted all lead ions from lead-loaded T. conoides biomass. The regeneration experiments revealed that the alga could be successfully reused for five cycles without any loss in lead biosorption capacity. A glass column (2 cm i.d. and 35 cm height) was used to study the continuous lead biosorption performance of T. conoides. At 25 cm (bed height), 5 ml/min (flow rate) and 100 mg/l (initial lead concentration), T. conoides exhibited lead uptake of 220.1 mg/g. The column was successfully eluted using 0.1 M HCl, with elution efficiency of 99.7%.  相似文献   

20.
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2 °C, 5 °C or 8 °C water) and weekly, 1-h heat shocks (+3 °C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148 d at 2 °C, 92 d at 5 °C, 50 d at 8 °C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3 °C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8 °C and 5 °C embryos were significantly smaller and had larger yolks than 2 °C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号