首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heterogeneous biocatalyst for the biotransformation of nitriles and amides of carboxylic acids in the form of cells of nitrile-hydrolyzing bacteria immobilized on the carrier, was created based on multiwalled carbon nanotubes (MWCNTs). It was shown that bacterial cells form aggregates in contact with powderformed purified or unpurified MWCNTs. The amount of both gram-positive and gram-negative bacteria binding with unpurified MWCNTs was significantly higher than with purified. The nitrile hydratase and amidase activity of bacterial aggregates of purified MWCNTs was preserved to a greater extent as compared to that of unpurified MWCNTs and cells adhered to the surface of the carbonized pyrosealing material with MWCNTs. Both gram-positive Rhodococcus ruber gt1 and gram-negative Alcaligenes faecalis 2 remained viable when cultured in the presence of purified or unpurified MWCNTs. The obtained heterogeneous biocatalyst can be easily separated from the medium by filtration and can be used repeatedly.  相似文献   

2.
Yoon SH  Jin HJ  Kook MC  Pyun YR 《Biomacromolecules》2006,7(4):1280-1284
Electrically conducting polymeric membranes were prepared by incorporating multiwalled carbon nanotubes (MWCNTs) into bacterial cellulose pellicles produced by Gluconacetobacter xylinum. The MWCNTs were dispersed in a surfactant (cationic cetyl trimethylammonium bromide) solution, and cellulose pellicles were dipped into the solution for 6, 12, and 24 h. The surfactants were then extracted in pure water and dried. Electron microscopy showed that the individual MWCNTs were strongly adhered to the surface and the inside of the cellulose pellicle. The conductivity of the MWCNTs-incorporated cellulose pellicle, as measured by a four-probe at room temperature, was 1.4 x 10(-1) S/cm, based on the total cross-sectional area (approximately 9.6 wt % of MWCNTs). This suggests that the MWCNTs were incorporated uniformly and densely into the pellicles.  相似文献   

3.
利用滤纸培养基从象白蚁(Nasutitermes sp.)肠道中分离出一个具有纤维素降解能力,能够降解滤纸的混合菌群。在起始pH 6.5,37℃培养条件下培养6d可得到最高的纤维素酶(CMCase和FPase)活性。在优化条件下,混合菌群的滤纸降解率在第15d达到最大值66.3%,显示出较高的滤纸降解效率。酶谱活性染色分析显示,混合菌群在以滤纸为唯一碳源的生长过程中至少表达了8种内切葡聚糖酶和4种木聚糖酶。扫描电镜观察到该混合菌群包含短杆状和球形两种形态的细菌。基于16SrRNA基因的系统发育分析表明,该混合菌群中至少存在两种细菌,分别属于沙雷氏菌属(Serratia)和类芽胞杆菌属(Paenibacillus)。这两种细菌协同降解纤维素的机制值得进一步深入研究。  相似文献   

4.
Utilization of -xylose as carbon source for production of bacterial cellulose was studied. Seventeen strains of acetic acid bacteria were screened for their cellulose productivity in -glucose, -xylose, and -xylose/ -xylulose mixed media, respectively. -Xylose was not well metabolized by any bacterial strains that exhibited high cellulose production in -glucose medium. Consequently, bacterial cellulose production in -xylose medium was unsuccessful. -Xylose, however, became utilizable substrate for bacterial strains if xylose-isomerase was added to the medium. Acetobacter xylinus IFO 15606 was the best cellulose producer in -xylose/ -xylulose mixed medium, so cultural conditions were studied for enhanced cellulose production. With pH controlled, the strain could produce cellulose at a yield exceeding 0.3 g per 100 ml of -xylose/ -xylulose mixed medium, which was comparable to the yields in -glucose medium by excellent producers in the literature.  相似文献   

5.
Aiming at learning the functional bacterial community in the high humus content, saline-alkaline soils of chinampas, the cellulolytic bacteria were quantified and 100 bacterial isolates were isolated and characterized in the present study. Analysis of 16S-23S IGS (intergenic spacer) RFLP (restriction fragment length polymorphism) grouped the isolates into 48 IGS types and phylogenetic analysis of 16S rRNA genes identified them into 42 phylospecies within 29 genera and higher taxa belonging to the phyla Actinobacteria, Firmicutes and Proteobacteria, dominated by the genera Arthrobacter, Streptomyces, Bacillus, Pseudomonas, Pseudoxanthomonas and Stenotrophomonas. Among these bacteria, 63 isolates represent 26 novel putative species or higher taxa, while 37 were members of 17 defined species according to the phylogenetic relationships of 16S rRNA gene. Except for the novel species, the cellulolytic activity was not reported previously in 9 of the 17 species. They degraded cellulose in medium at pH?4.5–10.0 or supplied with NaCl up to 9 %. In addition, 84.8 and 71.7 % of them degraded xylan and Avicel, respectively. These results greatly improved the knowledge about the diversity of cellulolytic bacteria and demonstrated that the chinampa soils contain diverse and novel cellulolytic bacteria functioning at a wide range of pH and salinity levels, which might be a valuable biotechnological resource for biotransformation of cellulose.  相似文献   

6.
AIM: To expand hematopoietic/progenitor stem cells (HS/PCs) from umbilical cord blood (UCB) and prepare the HS/PC product, and analyze preclinical transplantation and safety of HS/PC product. METHODS: Human bone marrow-derived mesenchymal stem cells (MSCs) were used as feeder cells to expand HS/PCs from UCB in a serum-free culture system. The proliferation potential of HS/PCs was analyzed. The expanded HS/PCs were suspended in the L-15 medium to prepare the HS/PC product. The contamination of bacteria, fungi and mycoplasmas, the infection of exogenous virus, the concentration of bacterial endotoxin, and the SCF residual in HS/PC product were determined. Finally, cells from the HS/PC product with or without bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the irradiated NOD/SCID mice to determine the in vivo engraftment potential. RESULTS: After co-culture for 10 d, the total nuclear cells (TNCs) increased 125-fold, and CD34 + cells increased 43-fold. The granulocyte-macrophage colonyforming cells (GM-CFCs) and erythroid colony-forming cells (E-CFCs) increased 3.3and 4.7-fold respectively. The expanded cells were collected and prepared as the expanded product of HS/PCs by re-suspending cells in L-15 medium. For preclinical safety, the HS/PC product was analysed for contamination by bacteria, fungi and mycoplasmas, the bacterial endotoxin concentration and the SCF content. The results showed that the HS/PC product contained no bacteria, fungi or mycoplasmas. The bacterial endotoxin concentration was less than the detection limit of 6 EU/mL, and residual SCF was 75 pg/mL. Based on clinical safety, the HS/PC product was qualified for clinical transplantation. Finally, the HS/PC product was transplanted the irradiated mice where it resulted in rapid engraftment of hematopoietic cells. CONCLUSION: HSPC product prepared from UCB in the serum-free culture system with hMSCs as feeder cells should be clinically safe and effective for clinical transplantation.  相似文献   

7.
We studied the role of bacterial secondary metabolites in the context of grazing protection against protozoans. A model system was used to examine the impact of violacein-producing bacteria on feeding rates, growth, and survival of three common bacterivorous nanoflagellates. Freshwater isolates of Janthinobacterium lividum and Chromobacterium violaceum produced the purple pigment violacein and exhibited acute toxicity to the nanoflagellates tested. High-resolution video microscopy revealed that these bacteria were ingested by the flagellates at high rates. The uptake of less than three bacteria resulted in rapid flagellate cell death after about 20 min and cell lysis within 1 to 2 h. In selectivity experiments with nontoxic Pseudomonas putida MM1, flagellates did not discriminate against pigmented strains. Purified violacein from cell extracts of C. violaceum showed high toxicity to nanoflagellates. In addition, antiprotozoal activity was found to positively correlate with the violacein content of the bacterial strains. Pigment synthesis in C. violaceum is regulated by an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system. An AHL-deficient, nonpigmented mutant provided high flagellate growth rates, while the addition of the natural C. violaceum AHL could restore toxicity. Moreover, it was shown that the presence of violacein-producing bacteria in an otherwise nontoxic bacterial diet considerably inhibited flagellate population growth. Our results suggest that violacein-producing bacteria possess a highly effective survival mechanism which may exemplify the potential of some bacterial secondary metabolites to undermine protozoan grazing pressure and population dynamics.  相似文献   

8.
Adaptive laboratory evolution through 12 rounds of culturing experiments of the nanocellulose-producing bacterium Komagataeibacter hansenii ATCC 23769 in a liquid fraction from hydrothermal pretreatment of corn stover resulted in a strain that resists inhibition by phenolics. The original strain generated nanocellulose from glucose in standard Hestrin and Schramm (HS) medium, but not from the glucose in pretreatment liquid. K. hansenii cultured in pretreatment liquid treated with activated charcoal to remove inhibitors also converted glucose to bacterial nanocellulose and used xylose as carbon source for growth. The properties of this cellulose were the same as nanocellulose generated from media specifically formulated for bacterial cellulose formation. However, attempts to directly utilize glucose proved unsuccessful due to the toxic character of the lignin-derived phenolics, and in particular, vanillan and ferulic acid. Adaptive laboratory evolution at increasing concentrations of pretreatment liquid from corn stover in HS medium resulted in a strain of K. hansenii that generated bacterial nanocellulose directly from pretreatment liquids of corn stover. The development of this adapted strain positions pretreatment liquid as a valuable resource since K. hansenii is able to convert and thereby concentrate a dilute form of glucose into an insoluble, readily recovered and value-added product—bacterial nanocellulose.  相似文献   

9.
The ability to synthesize cellulose by Asaia bogorensis, a member of the acetic acid bacteria, was studied in two substrains, AJ and JCM. Although both strains have identical 16S rDNA sequence, only the AJ strain formed a solid pellicle at the air-liquid interface in static culture medium, and we analyzed this pellicle using a variety of techniques. In the presence of cellulase, glucose and cellobiose were released from the pellicle suggesting that it is made of cellulose. Field emission electron microscopy allowed the visualization of a 3D knitted structure with ultrafine microfibrils (approximately 5-20 nm in width) in cellulose from A. bogorensis compared with the 40-100 nm wide microfibrils observed in cellulose isolated from Gluconacetobacter xylinus, suggesting differences in the mechanism of cellulose biosynthesis or organization of cellulose synthesizing sites in these two related bacterial species. Identifying these differences will lead to a better understanding of cellulose biosynthesis in bacteria.  相似文献   

10.
The structure of bacterial cellulose is affected by the bacterial strain used, culture media and cultivation conditions. In this study, acid-treated multi-walled carbon nanotubes (MWNTs) were added into a static culture medium and their effect on bacterial cellulose structure was studied by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), CP/MAS (13)C NMR and X-ray diffractometry. The bacterial cellulose ribbons and the MWNTs interwound and formed a three-dimensional network architecture. Band-like assemblies with sharp bends and rigidity were also produced in the presence of MWNTs. The intermolecular hydrogen bonds in bacterial cellulose produced in the presence of MWNTs were weakened. The crystal structure, cellulose I(alpha) content, crystallinity index (CrI) and crystallite size all changed. The results may suggest that the acid-treated MWNTs containing hydroxyl groups interact with the sub-elementary bacterial cellulose fibrils, subsequently interfering with the aggregation and crystallization.  相似文献   

11.
细菌纤维素发酵培养基的优化及超微观结构分析   总被引:1,自引:0,他引:1  
为了提高细菌纤维素的产量, 本研究对一株氧化葡糖杆菌菌株J2液体发酵生产细菌纤维素的培养基进行了优化, 并对其代谢的细菌纤维的超微观结构进行了观察。运用Plackett-Burman试验设计法对8个相关影响因素的效应进行了评价, 筛选出了有显著效应的3个因素: 酵母膏、ZnSO4、无水乙醇, 其他5个因素的影响未达到显著水平(P>0.05)。然后采用Box-Behnken的中心组合试验设计和响应面分析方法(RSM)确定了上述三个因素的最佳浓度, 并且以棉纤维为对照, 运用扫描电镜观察了细菌纤维素的超微观结构, 结果表明: 菌株J2利用优化后的发酵培养基生产细菌纤维素的产量为11.52 g/100 mL, 是优化前的1.35倍, 电镜照片显示细菌纤维素微纤维丝直径<0.1 mm, 比棉纤维细很多, NaOH处理可以除去纤维网络结构中的菌体。  相似文献   

12.
Water is the major constituent of environmental medium and biological systems. The effects occurring in water as a result of low-intensity electromagnetic irradiation (EMI) in extremely high frequencies are supposed to be the primary mechanism to create conditions for biological responses. The EMI effects on Escherichia coli, after irradiation of their suspension, are most probably water-mediated. Indirect effects of EMI at 51.8, 53, 70.6, and 73 GHz frequencies on bacteria, through water, assay buffer (Tris–phosphate buffer with inorganic salts at low or moderate concentrations), or peptone growth medium were studied. The mediated effects of 70.6 and 73 GHz irradiated water, assay buffer, and growth medium on E. coli growth characteristics were insignificant. But the results were different for 51.8 and 53 GHz. EMI mediated effects on bacterial growth were clearly demonstrated. The effects were more strongly expressed with 53 GHz. Moreover, it was shown that 70.6 and 73 GHz similarly suppressed the cell growth after direct irradiation of E. coli in water or on solid medium. Interestingly, for 51.8 and 53 GHz the bacterial growth decreases after suspension irradiation was less, compared to the direct irradiation of bacteria on solid medium. Especially, it was also more expressed in case of 53 GHz. Also with electron microscopy, EMI-induced bacterial cell sizes and structure different changes were detected. In addition, the distinguished changes in surface tension, oxidation–reduction potential and pH of water, assay buffer, growth medium, and bacterial suspension were determined. They depended on EMI frequency used. The differences could be associated with the partial absorbance of EMI energy by the surrounding medium, which depends on a specific frequency. The results are crucial to understand biophysical mechanisms of EMI effects on bacteria.  相似文献   

13.
为了提高细菌纤维素的产量, 本研究对一株氧化葡糖杆菌菌株J2液体发酵生产细菌纤维素的培养基进行了优化, 并对其代谢的细菌纤维的超微观结构进行了观察。运用Plackett-Burman试验设计法对8个相关影响因素的效应进行了评价, 筛选出了有显著效应的3个因素: 酵母膏、ZnSO4、无水乙醇, 其他5个因素的影响未达到显著水平(P>0.05)。然后采用Box-Behnken的中心组合试验设计和响应面分析方法(RSM)确定了上述三个因素的最佳浓度, 并且以棉纤维为对照, 运用扫描电镜观察了细菌纤维素的超微观结构, 结果表明: 菌株J2利用优化后的发酵培养基生产细菌纤维素的产量为11.52 g/100 mL, 是优化前的1.35倍, 电镜照片显示细菌纤维素微纤维丝直径<0.1 mm, 比棉纤维细很多, NaOH处理可以除去纤维网络结构中的菌体。  相似文献   

14.
Cellulose producing bacterial strain was isolated from citrus fruit juice fungus. The isolated strain was identified as Gluconacetobacter sp. gel_SEA623-2 based on several morphological characteristics, biochemical tests, and 16S rRNA conducted. Culture conditions for bacterial cellulose production by SEA623-2 were screened in static trays. Conditions were extensively optimized by varying the kind of fruit juice, pH, sugar concentration, and temperature for maximum cellulose production. SEA623-2 has a high productive capacity in citrus processing medium, but not in other fruits. The optimal combination of the media constituents for bacterial cellulose production is as follows: 10% citrus juice, 10% sucrose, 1% acetic acid, and 1% ethanol at 30 °C, pH 3.5. Bacterial cellulose produced by SEA623-2 has soft physical properties, high tensile strength, and high water retention value. The cellulose produced by the selected bacteria is suitable as a cosmetic and medical material.  相似文献   

15.
The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration.  相似文献   

16.
Bacterial cellulose has multiple applications in various industries such as food, biomedical, textile due to its uniqueness of being a better bio-compatible coating agent, binding material, etc. In this study, optimization of the culture medium for producing BC from Leifsonia soli was carried out by selecting different parameters. Five significant factors such as maltose, pH, incubation days, soy whey and calcium chloride were estimated through ANOVA based response surface methodology. Maximum cellulose production (5.97 g/L) was obtained where maltose 1 % (w/v) supplemented with 0.8 % (v/v) soy whey and calcium chloride 0.8 % (w/v) at pH 6.5 for 7 days of incubation. In addition, assurance of cellulose production from bacteria was done by using High-performance liquid chromatography analysis. Further, the structure and purity of obtained cellulose were examined by SEM and elemental analysis where it was observed that the sample holds the value of carbon 44.1 ± 0.20 % and hydrogen 6.2 ± 0.3 %, respectively. This study concludes that the addition of maltose and soy whey could be used as carbon, nitrogen sources and calcium chloride was used as an additive for the bacterial cellulose production compared to the Hestrin Schramm medium. In addition, the calculated water holding capacity of the sample was found to be 73 %.  相似文献   

17.
A study has been made of the promoting effect of starch on cellulose digestion by mixed rumen bacteria in a cellulose-urea medium. Starch supplementation of the medium promoted the growth of bacteria that required neither amino acids (AA) nor branched-chain fatty acids (BrFA). The growth of these bacteria was followed by the growth of AA-dependent bacteria, AA- or BrFA-dependent bacteria, BrFA-producing bacteria, and finally, BrFA-dependent cellulolytic bacteria. Population changes of these bacterial groups corresponded with a cross-feeding of AA and BrFA and the overall disappearance of cellulose. The data suggest that the nutritional interdependence among rumen bacteria affects the rate of cellulose digestion.  相似文献   

18.
The saccharogenic liquid (SFW) obtained by the enzymatic saccharification of food wastes was used as a medium for production of bacterial cellulose (BC). The enzymatic saccharification of food wastes was carried out by the cultivation supernatant ofTrichoderma harziaum FJ1 culture.Acetobacter xylinum KJ1 was employed for the BC production culture. The physical properties, such as polymerization, crystallinity, Young's modulus, and tensile strength, of BCs produced by three culture methods: the static cultures using HS (Hestrin-Schramm) as a reference medium (A) or the SFW medium (B), the shaking culture (C) or the air circulation culture (D) using the SFW medium, were investigated. The degrees of polymerization of BCs produced under the different culture conditions (A∼D) showed 11000, 9500, 8500, and 9200, respectively. Young's modulus was 4.15, 5.0, 4.0, and 4.6 GPa, respectively. Tensile strength was 124, 200, 80, and 184 MPa, respectively. All of the BC had a form of cellulose I representing pure cellulose. In the case of the shaking culture, the degree of crystallinity was 51.2%, the lowest degree. Under the other culturing conditions, the trend should remain in the range of 89.7–84%. Overall, the physical properties of BC produced from SFW were similar to those of BC from HS medium, a commercial complex medium, and BC production by the air circulation culture mode brought more favorable results in terms of the physical properties and its ease of scale-up. Therefore, it is expected that a new BC production method, like air circulation culture using SFW, would contribute greatly to BC-related manufacturing.  相似文献   

19.
Acetobacter xylinum, a bacterium which secretes a cellulose nanofiber, moves due to the inverse force of extrusion of the fiber, which accordingly correlates with the fiber production rate. To improve the production, the moving rate of the bacterium was focused to examine the influential factors on the substrates for culture and additives in the culture medium. From the real-time video analysis, the oriented template having a strong interaction with the secreted cellulose nanofibers proved to be suitable for the bacteria to move faster. Furthermore, addition of carboxymethylcellulose sodium salt (CMC) to the culture medium cause the bacteria to move faster in the culture medium. In this case, secreted cellulose nanofiber formed different from a normal cellulose nanofiber. The above result could provide an understanding how the formation of cellulose nanofibers contributes to the production rate as well as the bacterial moving rate.  相似文献   

20.
The Chromobacterium violaceum ATCC 12472 genome was sequenced by The Brazilian National Genome Project Consortium. Previous annotation reported the presence of cellulose biosynthesis genes in that genome. Analysis of these genes showed that, as observed in other bacteria, they are organized in two operons. In the present work, experimental evidences of the presence of cellulose in the extracellular matrix of the biofilm produced by C. violaceum in static cultures are shown. Biofilm samples were enzymatically digested by cellulase, releasing glucose units, suggesting the presence of cellulose as an extracellular matrix component. Fluorescence microscopy observations showed that C. violaceum produces a cellulase-sensitive extracellular matrix composed of fibers able to bind calcofluor. C. violaceum grows on medium containing Congo red, forming brown-red colonies. Together, these results suggest that cellulase-susceptible matrix material is cellulose. Scanning electronic microscopy analysis showed that the extracellular matrix exhibited a network of microfibrils, typical of bacterial cellulose. Although cellulose production is widely distributed between several bacterial species, including at least the groups of Gram-negative proteobacteria alpha and gamma, we give for the first time experimental evidence for cellulose production in beta-proteobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号