首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to search for a chitosan with low crystallinity, partially N-deacetylated chitins (PDC) and partially N-acetylated chitosans (PAC) with a low degree of N-acetylation (DAc) were examined by X-ray powder diffraction measurements. Three PDC samples, having less than 30% DAc and prepared by solid-state deacetylation, gave X-ray powder patterns showing the presence of α-chitin, a hydrated crystal of chitosan, or their mixture, respectively. When these PDC samples were treated with an acid-alkali, however, reduced crystallinity was observed. By annealing in water at 160 or 200°C, the latter PDC having DAc less than approx. 22% gave powder patterns indicating the presence of an anhydrous crystal which may spoil the chitosan’s functionality. In contrast, PAC prepared by N-acetylating pure chitosan (DAc=0%) in a swollen state, which can be expected to have random copolymers in the chain, was always less crystallized than PDC, this crystallinity depending on the molecular weight. In the case of high-molecular-weight PAC samples, whose DAc was in the range of 5–21%, the effect of high molecular weight on reducing crystallinity was larger than that of the degree of N-acetylation.  相似文献   

2.
A solution of partially N-deacetylated chitosan in aqueous lithium hydroxide (LiOH)/urea was prepared successfully through a freeze-thawing process and the dissolution behavior was studied. The results indicated that chitosan can directly dissolve in LiOH/urea aqueous solution. LiOH mainly contributed to the breakage of intramolecular and intermolecular hydrogen bonds in chitosan. Urea, LiOH, and chitosan formed inclusion compound (IC) with urea as the IC host, and the LiOH-chitosan complex as the guest. Aqueous 4.8 wt % LiOH/8.0 wt % urea was verified to be the optimal solvent for chitosan. The results of rheology and viscosity characterizations revealed that chitosan/4.8 wt % LiOH/8.0 wt % urea aqueous solution was pseudoplastic fluid, and was more stable than the solution of chitosan in acetic acid at ambient temperature.  相似文献   

3.
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and the yields were 30.0-32.2% with that of chitosan C120 being the highest. The degree of N-deacetylation of chitosans (83.3–93.3%) increased but the average molecular weight (483–526 kDa) decreased with the prolonged reaction time. Crab chitosans showed lower lightness and WI values than purified chitin, chitosans CC and CS but higher than crude chitin. With the prolonged reaction time, the nitrogen (8.9–9.5%), carbon (42.2–45.2%) and hydrogen contents (7.9–8.6%) in chitosans prepared consistently increased whereas N/C ratios remained the same (0.21). Crab chitosans prepared showed a melting endothermic peak at 152.3–159.2 °C. Three chitosans showed similar microfibrillar crystalline structure and two crystalline reflections at 2θ = 8.8–9.0° and 18.9–19.1°. Overall, the characteristics of three crab chitosans were unique and differed from those of chitosan CC and CS as evidenced by the element analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction patterns.  相似文献   

4.
A novel pH-responsive hydrogel (CHC) composed of N-carboxyethyl chitosan (CEC) and N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) was synthesized by the redox polymerization technique. Turbidimetric titrations were used to determine the stoichiometric ratio of these two chitosan derivatives. The hydrogel was characterized by FT-IR, thermal gravimetric analysis (TGA), X-ray diffractometry (XRD), and scanning electron microscopy (SEM). The dynamic transport of water showed that the hydrogel reached equilibrium within 48 h. The swelling ratio of CHC hydrogel depended significantly on the pH of the buffer solution. The performance of the CHC as a matrix for the controlled release of BSA was investigated. It was found that the release behavior was determined by pH value of the medium as well as the intermolecular interaction between BSA and the hydrogels.  相似文献   

5.
Glyoxylic acid, added to aqueous suspensions of chitosan, causes immediate dissolution of chitosan and gel formation within 3–4 h if the pH is 4.5–5.5. Solutions at lower pH values gel after 2 min of warming at 60–80°. Chitosan glyoxylate solutions brought to alkaline pH with sodium hydroxide do not precipitate chitosan. Evidence is given that a Schiff base, namely N-(carboxymethylidene)chitosan, is formed. N-(Carboxymethylidene)chitosans are reduced by sodium cyanoborohydride at room temperature to give N-(carboxymethyl)chitosans, obtained as white, free-flowing powders, soluble in water at all pH values. A series of N-(carboxymethyl)chitosans having various degrees of acetylation and N-carboxymethylation was obtained, and characterized by viscometry, elemental analysis, and i.r. spectrometry. For the fully substituted N-(carboxymethyl)chitosans, the pK′ is 2.3, the pK″ is 6.6, and the isoelectric point is 4.1. The addition of N-(carboxymethyl)chitosan to solutions (0.2–0.5mm) of transition-metal ions produces immediate insolubilization of N-(carboxymethyl)chitosan-metal ion chelates.  相似文献   

6.
This paper considers the non-productive (inhibitory) binding of chitosans to lysozyme from chicken egg white. Chitosans are linear, binary heteropolysaccharides consisting of 2-acetamido-2-deoxy-β-d-glucose (GlcNAc; A-unit) and 2-amino-2-deoxy-β-d-glucose (GlcN, D-unit). The active site cleft of lysozyme can bind six consecutive sugar residues in subsites named A–F, and specific binding of chitosan sequences to lysozyme occurs with A-units in subsite C. Chitosans with different fractions of A-units (FA) induced nearly identical changes in the 1H NMR spectrum of lysozyme upon binding, and the concentration of bound lysozyme could be determined. The data were analysed using a modified version of the McGhee and von Hippel model for binding of large ligands to one-dimensional homogeneous lattices. The average value of the dissociation constant for different sequences that may bind to lysozyme (KaveD) was estimated, as well as the number of chitosan units covered by lysozyme upon binding. KaveD decreased with increasing FA-values at pH* 3 and 4.5, while the opposite was true at pH* 5.5. Contributions from different hexamer sequences to KaveD of the chitosans were considered, and the data revealed interesting features with respect to binding of lysozyme to partially N-acetylated chitosans. The relevance of the present data with respect to understanding lysozyme degradation kinetics of chitosans is discussed.  相似文献   

7.
Four chitosans with different molecular weights and degrees of deacetylation degree and 28 chitosans derived from these initial chitosans by ultrasonic degradation have been characterized by gel permeation chromatography (GPC), FT-IR spectroscopy, X-ray diffraction and titrimetric analyses. Antimicrobial activities were investigated against E. coli and S. aureus using an inhibitory rate technique. The results showed that ultrasonic treatment decreased the molecular weight of chitosan, and that chitosan with higher molecular weight and higher DD was more easily degraded. The polydispersity decreased with ultrasonic treatment time, which was in linear relationship with the decrease of molecular weight. Ultrasonic degradation changed the DD of initial chitosan with a lower DD (<90%), but not the DD of the initials chitosan with a higher DD (>90%). The increased crystallinity of ultrasonically treated chitosan indicated that ultrasonic treatment changed the physical structure of chitosan, mainly due to the decrease of molecular weight. Ultrasonic treatment enhanced the antimicrobial activity of chitosan, mainly due to the decrease of molecular weight.  相似文献   

8.
A new biodegradable copolymer of chitosan and poly(p-dioxanone) (PPDO) was prepared through a protection-graft-deprotection procedure using N-phthaloyl-chitosan as an intermediate. PPDO terminated with the isocyanate group was allowed to react with hydroxyl groups of the N-phthaloyl-protected chitosan, and then the phthaloyl group was cleaved to give the free amino groups. The length of PPDO graft chains can be controlled easily by using the prepolymers of PPDO with different molecular weights. The resulting products were thoroughly characterized with FT-IR, 1H NMR, TG, DSC, SEM, and WAXD. The copolymers were used as drug carriers for sinomenine (7,8-didehydro-4-hydroxy-3,7-dimethoxy-17-methyl-9α,13α,14α-morphinan-6-one) and these exhibited a significant controlled drug-releasing behavior whether in artificial gastric juice or in neutral phosphate buffer solution.  相似文献   

9.
We determined the crystal structure of anhydrous chitosan at atomic resolution, using X‐ray fiber diffraction data extending to 1.17 Å resolution. The unit cell [a = 8.129(7) Å, b = 8.347(6) Å, c = 10.311(7) Å, space group P212121] of anhydrous chitosan contains two chains having one glucosamine residue in the asymmetric unit with the primary hydroxyl group in the gt conformation, that could be directly located in the Fourier omit map. The molecular arrangement of chitosan is very similar to the corner chains of cellulose II implying similar intermolecular hydrogen bonding between O6 and the amine nitrogen atom, and an intramolecular bifurcated hydrogen bond from O3 to O5 and O6. In addition to the classical hydrogen bonds, all the aliphatic hydrogens were involved in one or two weak hydrogen bonds, mostly helping to stabilize cohesion between antiparallel chains. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 361–368, 2016.  相似文献   

10.
New Monensin A acid complexes with water molecule, sodium chloride and sodium perchlorate were obtained and studied by X-ray and (1)H, (13)C NMR and FT-IR methods as well as ab initio calculations. The crystal structure of the complexes indicates the complexation of the water molecule and Na(+) cation in the pseudo-cycle conformation of the Monensin acid molecule stabilised by intramolecular hydrogen bonds. Important for stabilisation of this structure is also the intermolecular hydrogen bonds with water molecule or the coordination bonds with Na(+) cation. It is demonstrated that the counterions forming intermolecular hydrogen bonds with OH groups influence the strength of the intramolecular hydrogen bonds, but they have no influence on the formation of pseudo-cyclic structure. Spectroscopic studies of the complexes in dichloromethane solution have shown that the pseudo-cyclic structure of the compounds is conserved. As follows from the ab initio calculations, the interactions between the Na(+) cation and the electronegative oxygen atoms of Monensin acid totally change the molecular electrostatic potential around the supramolecular Monensin acid-Na(+) cationic complex relative to that of the neutral Monensin acid molecule.  相似文献   

11.
The X-ray diffraction analysis of N-o-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (1), N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, N-p-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, and their N-acetyl derivatives was performed. The sugar moieties always adopt 4C1 conformations, however, due to crystal packing forces they are always slightly distorted. It was found that except N-acetyl, N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (5), none of the glucopyranosylamines studied in this paper form strong hydrogen bonds in the crystal lattice. Additionally, (5) crystallizes with a molecule of water, which occupies a special crystallographic position (on the twofold axis) and links two sugar molecules by hydrogen bonds. The CP MAS NMR spectra confirmed the presence of the intermolecular hydrogen bond involving the molecule of water in (5). Moreover, it was proved that in (1) an intramolecular hydrogen bond is formed between the glycosidic linkage and the nitro group.  相似文献   

12.
Stairs of cyclic tellurane (1,3-dihydro-2λ4-benzotellurole-2,2-diyldicinnamate) [C8H8Te(OCOCHCHC6H5)2] 1 assisted by intermolecular Te-O secondary bonds, intramolecular Te-O secondary bonds and C-H-O hydrogen bonds have been obtained. 1 accounts for the rare example, in organotellurium chemistry, containing both intermolecular and intramolecular Te-O secondary bonds acting as crystal structure directors to yield stair type supramolecular association assisted by CH-O hydrogen bonds.  相似文献   

13.
Water-soluble N-(4-carboxybutyroyl) chitosan derivatives with different degrees of substitution (DS) were synthesized to enhance the antimicrobial activity of chitosan molecule against plant pathogens. Chitosan in a solution of 2% aqueous acetic acid-methanol (1:1, v/v) was reacted with 0.1, 0.3, 0.6 and 1 mol of glutaric anhydride to give N-(4-carboxybutyroyl) chitosans at DS of 0.10, 0.25, 0.48 and 0.53, respectively. The chemical structures and DS were characterized by 1H and 13C NMR spectroscopy, which showed that the acylate reaction took place at the N-position of chitosan. The synthesized derivatives were more soluble than the native chitosan in water and in dilute aqueous acetic acid and sodium hydroxide solutions. The antimicrobial activity was in vitro investigated against the most economic plant pathogenic bacteria of Agrobacterium tumefaciens and Erwinia carotovora and fungi of Botrytis cinerea, Pythium debaryanum and Rhizoctonia solani. The antimicrobial activity of N-(4-carboxybutyroyl) chitosans was strengthened than the un-modified chitosan with the increase of the DS. A compound of DS 0.53 was the most active one with minimum inhibitory concentration (MIC) of 725 and 800 mg/L against E. carotovora and A. tumefaciens, respectively and also in mycelial growth inhibiation against B. cinerea (EC50 = 899 mg/L), P. debaryanum (EC50 = 467 mg/L) and R. solani (EC50 = 1413 mg/L).  相似文献   

14.
The linear non-sulfated glycosaminoglycan, hyaluronic acid (HA), is widely distributed throughout connective, epithelial and neural tissues etc., and is of great importance in tissue hydration, lubrication and cellular function. Along with the age growth, HA will lose its acetyl groups under action of HA N-deacetylase in vivo. However, the biological consequence of this physiological process remains largely unknown. Herein two highly N-deacetylated HAs, dHA-6 and dHA-10 were generated via the NH2NH2-HIO3 procedure. Their molecular weights were estimated to be 24 and 16 kDa by high performance gel-permeation chromatography (HPGPC), and the N-deacetylation degrees were 79.4 % and 93 % respectively, as determined by 1H nuclear magnetic resonance (NMR). The study on moisture-absorption (Ra) and -retention (Rh) abilities demonstrated that the Ra values of dHAs under conditions of 81 % or 43 % relative humidity, as well as the Rh values of dHAs under dry condition or 43 % relative humidity, were significantly smaller than that of their respective re-N-acetylated products. The decline of moisture-absorption and –retention capacity after HA N-deacetylation were consistent with the appearance of unsolvated amides remained in the N-deacetylated products, as indicated by circular dichroism (CD) spectroscopy. Our findings implied that HA N-deacetylation, in addition to the decrease of HA contents in the elderly persons, might account for manifestations of naturally aged skin, such as laxity, sagging, and wrinkling.  相似文献   

15.
We investigated structural reorganization of two different kinds of molecular sheets derived from the cellulose II crystal using molecular dynamics (MD) simulations, in order to identify the initial structure of the cellulose crystal in the course of its regeneration process from solution. After a one-nanosecond simulation, the molecular sheet formed by van der Waals forces along the () crystal plane did not change its structure in an aqueous environment, while the other one formed by hydrogen bonds along the (1 1 0) crystal plane changed into a van der Waals-associated molecular sheet, such as the former. The two structures that were calculated showed substantial similarities such as the high occupancy of intramolecular hydrogen bonds between O3H and O5 of over 0.75, few intermolecular hydrogen bonds, and the high occurrence of hydrogen bonding with water. The convergence of the two structures into one denotes that the van der Waals-associated molecular sheet can be the initial structure of the cellulose crystal formed in solution. The main chain conformations were almost the same as those in the cellulose II crystal except for a −16° shift of φ (dihedral angle of O5-C1-O1-C4) and the gauche-gauche conformation of the hydroxymethyl side group appears probably due to its hydrogen bonding with water. These results suggest that the van der Waals-associated molecular sheet becomes stable in an aqueous environment with its hydrophobic inside and hydrophilic periphery. Contrary to this, a benzene environment preferred a hydrogen-bonded molecular sheet, which is expected to be the initial structure formed in benzene.  相似文献   

16.
From the crystals of trans aquabis(N,N-dimethylglycinato-κNO)copper(II) dihydrate (compound 1, space group P212121) novel crystal structure of trans aquabis(N,N-dimethylglycinato-κNO)copper(II) (compound 2, space group Pbca) was obtained and analysed by X-ray diffraction. In the crystal structure 1, the O-H?O hydrogen bonds form three-dimensional network. In the crystal structure 2, two-dimensional layers stacking to each other are formed, with non-polar N,N-dimethyl groups placed on the opposite sides of the layers, and with the polar part in the middle forming CO?O-H and C-H?O hydrogen bonds. Different hydrogen bonding patterns in 1 and 2 do not pronouncedly affect molecular geometry of the title compound. Molecular mechanics force field suited for studying the properties of bis(amino acidato)copper(II) complexes in the solid state can follow the differences between the experimental molecular structures in the two diverse crystalline surroundings. To make possible direct comparison between crystal lattices, the force field was applied to predict unit cell packing of supposed anhydrous bis(N,N-dimethylglycinato)copper(II) in space group Pbca. Relative intermolecular energies of hypothetic anhydrous crystal and simulated 1 and 2 crystals are discussed. On the basis of experimental and theoretical results we conclude that the main effect of two water molecules of crystallisation in 1 is to stabilise the crystal packing via hydrogen bonding, whilst similar pyramidal copper(II) coordination geometry in 1 and 2 is due to axially coordinated water molecule and its intermolecular interactions.  相似文献   

17.
Neutral protease was immobilized on chitosan (CS), carboxymethyl chitosan (CMCS), and N-succinyl chitosan (NSCS) hydrogel beads. And the biocatalysts obtained were used to prepare low molecular weight chitosan (LMWC) and chitooligomers. Weight-average molecular weight of LMWC produced by neutral protease immobilized on CS, CMCS and NSCS hydrogel beads were 3.4 kDa, 3.2 kDa and 1.9 kDa, respectively. The effects of immobilization support and substrate on enzymatic reaction were analyzed by measuring classical Michaelis-Menten kinetic parameters. The FT-IR, XRD and potentiometric determination results indicated decrease of molecular weight led to transformation of crystal structure, but the degree of N-deacetylation and chemical structures of residues were not changed compared to initial chitosan. The degree of polymerization of chitooligomers was mainly from 2 to 7. We observed a strong dependence of the immobilized enzyme properties on the chemical nature of the supports, which leads to different microenvironment of neutral protease and changes the hydrolyzing process.  相似文献   

18.
A novel approach of colorimetric quantification of chitosan based on the derivatization reaction of its primary amino groups with o-phthalaldehyde and a thiol – N-acetyl-l-cysteine has been developed. The reaction of equal volumes of sample solution and the reagent solution was allowed to proceed for 1 h, and then the absorbance values were measured at 340 nm against the reference solution. The procedure conditions have been optimized for chitosan assay in the presence of polyanionic electrolyte dextran sulphate (pH 8.9, the reagent solution: 4.0 mM o-phthalaldehyde, 2.6 mM N-acetyl-l-cysteine, 0.25 M NaCl). The method has proven to be convenient and reliable for quantitative determination of either the concentrations of chitosans of various molecular weights or their degree of deacetylation. The different reactivity of chitosans and proteins can be used in order to determine chitosan in presence of the protein. This approach ensured accurate assay within the chitosan concentrations ranging from 0.01 to 0.15 mg/ml and could be applied for quantitative analysis of chitosan in protein-loaded microparticles.  相似文献   

19.
[Co(NH3)5Cl]Cl2 forms neutral 1:3 complex by reaction with aromatic thiohydrazides, i.e. thiobenzhydrazide, o-hydroxythiobenzhydrazide, thiophen-2-thiohydrazide and furan-2-thiohydrazide. All these complexes are diamagnetic and have been characterized by elemental analysis and combination of spectroscopic methods. Cyclic voltammometry of the complexes shows irreversible metal centered and ligand centered electron transfer reactions. One complex, tris-o-hydroxythiobenzhydrazidocobalt(III), has been crystallized from DMSO solution to produce solvated crystals and its structure has been established by X-ray crystallography. Cobalt(III) ion is linked through three hydrazinic nitrogen and three sulfur atoms of three identical deprotonated ligand molecules in a distorted octahedral environment. Involvement of -OH group in intramolecular and intermolecular hydrogen bonding is crucial for crystal formation.  相似文献   

20.
Chitosan-like materials were extracted from five different fungal cells with NaOH and acetic acid, with the yields varying from 1.2 to 10.4% of the dry fungal cell weight. The degree of N-acetylation of the extracts measured by the colloidal titration method varied considerably depending on the individual species. By IR measurements and the Elson-Morgan method, four kinds of the extracts were characterized as chitosan while another one was not.

The degree of N-acetylation and the Cu2+ adsorption capacity of the fungal chitosans were measured and compared with those of authentic samples with various degrees of N-acetylation, which were prepared by chemical treatment of authentic chitin and chitosan derived from Crustacea. The Cu2+ adsorption capacity of the fungal chitosans was higher than that of the authentic chitosan samples with similar degrees of N-acetylation and independent of the molecular weight of the chitosans from the various sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号