首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present study is the first report demonstrating that ionic liquids consisting of cholinium cations and linear carboxylate anions ([Ch][CA] ILs) can be used for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Six variants of [Ch][CA] ILs were systematically prepared by combining cholinium cations with linear monocarboxylate anions ([CnH2n+1–COO], n = 0–2) or dicarboxylate anions ([HOOC–CnH2n+1–COO], n = 0–2). These [Ch][CA] ILs were analyzed for their toxicity to yeast cell growth and their ability to pretreat kenaf powder for subsequent enzymatic saccharification. When assayed against yeast growth, the EC50 for choline acetate ([Ch][OAc]) was 510 mM, almost one order of magnitude higher than that for 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]). The cellulose saccharification ratio after pretreatment at 110 °C for 16 h with [Ch][OAc] (100.6%) was almost comparable with that after pretreatment with [Emim][OAc]. Therefore, [Ch][OAc] is a biocompatible alternative to [Emim][OAc] for lignocellulosic material pretreatment.  相似文献   

2.
Enzymic hydrolysis of steam-exploded wheat straw is initially a fast process which gradually slows down. Since the cellulolytic enzymes account for 60% of the processing costs incurred during saccharification of lignocellulosics, recirculation of these enzymes is clearly necessary. It is demonstrated that the cellulolytic enzymes have a high affinity for the remaining lignin. Only 50% of the added enzymes are free in solution after almost complete hydrolysis of the straw polysaccharides. Elution of the enzymes from the lignin can result in a total enzyme recovery of up to 90%. However, it is questionable whether elution of enzymes from the lignin is economically feasible as a technical process.  相似文献   

3.
Enzyme recirculation in saccharification of lignocellulosic materials   总被引:1,自引:0,他引:1  
Steam-exploded aspen wood and wheat straw were enzymically hydrolysed for 2 days when sugar yields of 53% and 49% were obtained. Removal of hydrolysate after 1 day and continued hydrolysis for a further 24 h increased the yields to 67 and 56%, respectively. After hydrolysis, 50% or more of the enzymes was adsorbed on the solid residue with the remainder in solution along with the hydrolysate. Enzymes in the hydrolysate were easily recovered by a few minutes contact with a plug of new substrate. A small quantity of sugar is also adsorbed, but ≈90% passes through the substrate plug. We propose here a simple technique for recirculating the enzymes attached to the solid residue, thereby improving significantly the total enzyme recovery and sugar yield per enzyme unit. An enzyme recovery factor, ERF, was calculated on the basis of sugar yields obtained with recovered enzyme and was compared with the initial amount of enzyme. ERF values of 0.79 and 0.73 were obtained with steam-exploded aspen wood and wheat straw, respectively. Various aspects associated with the adsorption of enzymes in the hydrolysate onto new substrate and the extent to which sugars are bound to the substrate and residue are discussed.  相似文献   

4.
Five locally isolated bacterial strains produced extracellular cellulase enzymes, primarily CMCase, when grown on different natural and commercial cellulosic substrates. Extracellular CMCase and avicelase activity was higher with the strain CLS-32, a Cytophaga sp., compared to four other strains. The whole-cell preparations of these isolates were found to saccharify cellulosic substrates to reducing sugars. Maximum release of reducing sugar (5.75 mg ml−1) was obtained with CLS-32 using sugar cane bagasse as growth and hydrolysis substrates.  相似文献   

5.

Background  

Screening new lignocellulosic biomass pretreatments and advanced enzyme systems at process relevant conditions is a key factor in the development of economically viable lignocellulosic ethanol. Shake flasks, the reaction vessel commonly used for screening enzymatic saccharifications of cellulosic biomass, do not provide adequate mixing at high-solids concentrations when shaking is not supplemented with hand mixing.  相似文献   

6.
A multireaction kinetic model was developed for closed-system enzymatic hydrolysis of lignocellulosic biomass such as corn stover. Three hydrolysis reactions were modeled, two heterogeneous reactions for cellulose breakdown to cellobiose and glucose and one homogeneous reaction for hydrolyzing cellobiose to glucose. Cellulase adsorption onto pretreated lignocellulose was modeled via a Langmuir-type isotherm. The sugar products of cellulose hydrolysis, cellobiose and glucose, as well as xylose, the dominant sugar prevalent in most hemicellulose hydrolyzates, were assumed to competitively inhibit the enzymatic hydrolysis reactions. Model parameters were estimated from experimental data generated using dilute acid pretreated corn stover as the substrate. The model performed well in predicting cellulose hydrolysis trends at experimental conditions both inside and outside the design space used for parameter estimation and can be used for in silico process optimization.  相似文献   

7.
We demonstrated that the enzymatic hydrolysis of cellulose after microwave pretreatment of lignocellulosic material in ionic liquids (ILs) is drastically enhanced compared with that after conventional thermal pretreatment in ILs. Three types of cholinium ILs, choline formate (ChFor), choline acetate (ChOAc), and choline propionate (ChPro), were examined. The cellulose saccharification percentage was approximately 20% for kenaf powders pretreated in ChFor, ChOAc, and ChPro by conventional heating at 110 °C for 20 min. In contrast, approximately 60–90% of cellulose was hydrolyzed to glucose after microwave pretreatment in the same ILs at 110 °C for 20 min.  相似文献   

8.

Background

Large-scale processing of lignocellulosics for glucose production generally relies on high temperature and acidic or alkaline conditions. However, extreme conditions produce chemical contaminants that complicate downstream processing. A method that mainly rely on mechanical and enzymatic reaction completely averts such problem and generates unmodified lignin. Products from this process could find novel applications in the chemicals, feed and food industry. But a large-scale system suitable for this purpose is yet to be developed. In this study we applied simultaneous enzymatic saccharification and communition (SESC) for the pre-treatment of a representative lignocellulosic biomass, cedar softwood, under both laboratory and large-scale conditions.

Results

Laboratory-scale comminution achieved a maximum saccharification efficiency of 80% at the optimum pH of 6. It was possible to recycle the supernatant to concentrate the glucose without affecting the efficiency. During the direct alcohol fermentation of SESC slurry, a high yield of ethanol was attained. The mild reaction conditions prevented the generation of undesired chemical inhibitors. Large-scale SESC treatment using a commercial beads mill system achieved a saccharification efficiency of 60% at an energy consumption of 50?MJ/kg biomass.

Conclusion

SESC is very promising for the mild and clean processing of lignocellulose to generate glucose and unmodified lignin in a large scale. Economic feasibility is highly dependent on its potential to generate high value natural products for energy, specialty chemicals, feed and food application.
  相似文献   

9.
The potential of 1-buthyl-3-methylpyridinium chloride, [Bmpy][Cl], as a pretreatment solvent for lignocellulosic biomasses, Bagasse and Eucalyptus, was investigated. The yields of regenerated biomasses ranged between 35% and 96%, and varied according to the pretreatment time, type of ionic liquid (IL) and biomass. The pretreatment of the biomass with [Bmpy][Cl] resulted in up to 8-fold increase in the cellulose conversion when compared with the untreated biomass. For a short pretreatment period (i.e., 10 min), [Bmpy][Cl] showed better performance than 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) with respect to the initial enzymatic saccharification rates. The increase in the reaction rates with [Emim][OAc] treatment was because of a reduction in the cellulose crystallinity. In contrast, a decrease in the crystallinity index was not clearly observed for the biomass pretreated with [Bmpy][Cl], and the enhancement of the enzymatic saccharification rates using this IL is presumably due to a reduction in the degree of polymerization of cellulose in the biomass.  相似文献   

10.
Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy, combined with partial least squares (PLS) regression, accurately predicted solubilization of plant cell wall constituents and NaOH consumption through pretreatment, and overall sugar productions from combined pretreatment and enzymatic hydrolysis. PLS regression models were constructed by correlating FTIR spectra of six raw biomasses (two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of prairie biomasses, mixed hardwood, and corn stover), plus alkali loading in pretreatment, to nine dependent variables: glucose, xylose, lignin, and total solids solubilized in pretreatment; NaOH consumed in pretreatment; and overall glucose and xylose conversions and yields from combined pretreatment and enzymatic hydrolysis. PLS models predicted the dependent variables with the following values of coefficient of determination for cross-validation (Q2): 0.86 for glucose, 0.90 for xylose, 0.79 for lignin, and 0.85 for total solids solubilized in pretreatment; 0.83 for alkali consumption; 0.93 for glucose conversion, 0.94 for xylose conversion, and 0.88 for glucose and xylose yields. The sugar yield models are noteworthy for their ability to predict overall saccharification through combined pretreatment and enzymatic hydrolysis per mass dry untreated solids without a priori knowledge of the composition of solids. All wavenumbers with significant variable-important-for-projection (VIP) scores have been attributed to chemical features of lignocellulose, demonstrating the models were based on real chemical information. These models suggest that PLS regression can be applied to FTIR-ATR spectra of raw biomasses to rapidly predict effects of pretreatment on solids and on subsequent enzymatic hydrolysis.  相似文献   

11.
The processing of agricultural wastes towards extraction of renewable resources is recently being considered as a promising alternative to conventional biofuel production. The degradation of agricultural residues is a complex chemical process that is currently time intensive and costly. Various pre-treatment methods are being investigated to determine the subsequent modification of the material and the main obstacles in increasing the enzymatic saccharification. In this study, we present a computational model that complements the experimental approaches. We decipher how the three-dimensional structure of the substrate impacts the saccharification dynamics. We model a cell wall microfibril composed of cellulose and surrounded by hemicellulose and lignin, with various relative abundances and arrangements. This substrate is subjected to digestion by different cocktails of well characterized enzymes. The saccharification dynamics is simulated in silico using a stochastic procedure based on a Gillespie algorithm. As we additionally implement a fitting procedure that optimizes the parameters of the simulation runs, we are able to reproduce experimental saccharification time courses for corn stover. Our model highlights the synergistic action of enzymes, and confirms the linear decrease of sugar conversion when either lignin content or crystallinity of the substrate increases. Importantly, we show that considering the crystallinity of cellulose in addition to the substrate composition is essential to interpret experimental saccharification data. Finally, our findings support the hypothesis of xylan being partially crystalline.  相似文献   

12.
13.
Front-end protein recovery from biomass at different maturities, and its effects on chemical pretreatment and enzyme hydrolysis of partially deproteinized fiber were investigated. The protein recovery from alfalfa and switchgrass biomass using sodium dodecyl sulfate and potassium hydroxide treatments was ~50–65 % of initial biomass protein. When hot water was used as extraction media, the protein recovery was 52.9 and 43.7 % of total protein in switchgrass and alfalfa, respectively. For any treatment, relative protein recovery was higher from switchgrass than from alfalfa. Only approximately half the total protein was recovered from relatively mature (early fall) biomass compared with midsummer harvested biomass. When protein was recovered partially using sodium dodecyl sulfate or potassium hydroxide, and leftover fiber pretreated, aqueous ammonia pretreatment removed 58.5–60.1 % of lignin and retained more cellulose in the fiber compared with acid pretreatment (nearly no lignin removal). Protein removal was helpful in the enzyme digestibility of fibers. Delignification of ammonia pretreated partially deproteinized alfalfa fiber was in the range of 34.4–45 %, while dilute sulfuric acid did not remove lignin effectively. Overall, the higher delignification and enzyme digestibilities were observed in aqueous ammonia pretreated partially deproteinized alfalfa fibers regardless of biomass type.  相似文献   

14.
Treatment of different cellulose materials with cellulase from Penicillium funiculosum showed a cellulase adsorption-desorption pattern on all materials. The relative rate of adsorption and saccharification (enzyme activity) increases with increasing temperature. At 60° cellulase adsorption increased while the enzyme activity decreased.  相似文献   

15.
16.
ABSTRACT: BACKGROUND: Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. RESULTS: In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring) moieties in EGCG underwent radical cross-coupling with monolignols mainly by beta--O--4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92 %) that far exceeded that for lignified controls (44 to 62 %). Alkali-insoluble residues from EGCG-lignified walls yielded up to 34 % more glucose and total sugars following enzymatic saccharification than lignified controls. CONCLUSIONS: It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops.  相似文献   

17.
We have previously demonstrated that a sulfuric acid-free ethanol (EtOH) cooking treatment enhances the enzymatic digestibility of eucalyptus wood and bagasse flour. In the present study, a reconfigured process that achieves similar performance was developed by identifying possible cost-competitive pretreatments that provide high cellulose-to-glucose conversion during subsequent enzymatic hydrolysis. The series of reconfigurations reduced EtOH usage in the pretreatment by more than 80% in comparison with our previous research. Higher initial pressures and intensive size reduction of the starting material are not required. The reconfigured process was applied to rice straw and Douglas fir, in order to confirm the feasibility of feedstock diversity.  相似文献   

18.
Several processes have been suggested to convert various types of lignocellulosic biomass into lignin products and saccharides. This paper evaluates the suitability of an organosolv process, a process using soda, a hydrothermal process and a process developed in this work, called the “Aquasolve process” for inclusion into a lignocellulosic biorefinery concept. Part II of this paper investigates the influence of the different pretreatment processes on the properties of rye straw lignin and evaluates their ability to produce high recoveries of high quality lignin.Specifications for high quality lignin products are defined and the isolated lignin fractions are analysed by Klason lignin, carbohydrate and ash content, elemental analysis, thermo-gravimetric analysis, 31P NMR, and size exclusion chromatography. The organosolv process shows the largest lignin recovery, followed by the soda and Aquasolve processes. Lignin products from the soda process, the Aquasolve process and with reservation the organosolv process show interesting properties for polymer applications.  相似文献   

19.
Shen Y  Zhang Y  Ma T  Bao X  Du F  Zhuang G  Qu Y 《Bioresource technology》2008,99(11):5099-5103
To reduce the cellobiose inhibition of exoglucanase and endogulcanase and enhance cellulose hydrolysis during simultaneous saccharification and fermentation (SSF), a beta-glucosidase encoding gene named BGL1 was cloned from Saccharomycopsis fibuligera and integrated into the chromosomal rDNA region of the Saccharomyces cerevisiae industrial strain NAN-27 producing NAN-227. Compared with the parental strain, which had no detectable activity, the beta-glucosidase specific activity in NAN-227 was 1.02 IU/mg of protein. When cellobiose was used as the sole carbon source in a shake-flask, NAN-227 consumed 6.2g/L of cellobiose and produced 3.3g/L of ethanol in 48 h. The yield was 0.532 g/g. The parent strain only consumed 1.92 g/L of cellobiose and no ethanol was detected. During the SSF of acid-pretreated corncobs NAN-227 produced 20 g/L of ethanol at 72 h, which was similar to the parent strain when 20IU of beta-glucosidase/g of substrate was added.  相似文献   

20.
Adav SS  Chao LT  Sze SK 《Molecular & cellular proteomics : MCP》2012,11(7):M111.012419-M111.012419-15
Trichoderma reesei is a mesophilic, filamentous fungus, and it is a major industrial source of cellulases, but its lignocellulolytic protein expressions on lignocellulosic biomass are poorly explored at present. The extracellular proteins secreted by T. reesei QM6a wild-type and hypercellulolytic mutant Rut C30 grown on natural lignocellulosic biomasses were explored using a quantitative proteomic approach with 8-plex high throughput isobaric tags for relative and absolute quantification (iTRAQ) and analyzed by liquid chromatography tandem mass spectrometry. We quantified 230 extracellular proteins, including cellulases, hemicellulases, lignin-degrading enzymes, proteases, protein-translocating transporter, and hypothetical proteins. Quantitative iTRAQ results suggested that the expressions and regulations of these lignocellulolytic proteins in the secretome of T. reesei wild-type and mutant Rut C30 were dependent on both nature and complexity of different lignocellulosic carbon sources. Therefore, we discuss here the essential lignocellulolytic proteins for designing an enzyme mixture for optimal lignocellulosic biomass hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号