首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wound healing properties of chitosan with different molecular weight and degree of deacetylation ranges have been examined. The macroscopic image and histopathology were examined using chitosan, Fucidin® ointment and to blank. The rate of contraction was evaluated by determination of the unclosed area as a function of time. The treated wounds were found to contract at the highest rate with high molecular weight–high degree of deacetylation chitosan-treated rats as compared to untreated, treated, and Fucidin® ointment-treated rats. Wounds treated with high molecular weight chitosan had significantly more epithelial tissue (p < 0.05) than wounds with any other treatment and the best re-epithelization and fastest wounds closure were found with the high molecular weight chitosan treatment group. Histological examination and collagenase activity studies revealed advanced granulation tissue formation and epithelialization in wounds treated with high molecular weight chitosan (p < 0.05). High molecular weight with high degree of deacetylation chitosan samples therefore demonstrates potential for use as a treatment system for dermal burns.  相似文献   

2.
Two series of new chitosan derivatives were synthesized by reaction of deacetylated chitosan (CH) with propyl (CH-Propyl) and pentyl (CH-Pentyl) trimethylammonium bromides to obtain derivatives with increasing degrees of substitution (DS). The derivatives were characterized by 1H NMR and potentiometric titration techniques and their antifungal activities on the mycelial growth of Aspergillus flavus were investigated in vitro. The antifungal activities increase with DS and the more substituted derivatives of both series, CH-Propyl and CH-Pentyl, exhibited antifungal activities respectively three and six times higher than those obtained with commercial and deacetylated chitosan. The minimum inhibitory concentrations (MIC) were evaluated at 24, 48 and 72 h by varying the polymer concentration from 0.5 to 16 g/L and the results showed that the quaternary derivatives inhibited the fungus growth at polymer concentrations four times lower than that obtained with deacetylated chitosan (CH). The chitosans modified with pentyltrimethylammonium bromide exhibited higher activity and results are discussed taking into account the degree of substitution (DS).  相似文献   

3.
Crustacean waste is one of the most severe issues, posing significant environmental and health risks. This study aims to improve managing marine waste by isolating chitosan from Procambarus clarkii by devising a new methodology, incorporating technical steps, e.g., washing, decolorization and deacetylation under a reflexive condenser and dialysis purification. A comparison was made between the prepared P. clarkii chitosan and four types of shrimp chitosans: commercial, high, low, and nano. The obtained chitosan has a low molecular weight and viscosity compared to the commercial shrimp chitosan used in various applications. P. clarkii chitosan was prepared in high quality from a cheap source, as its color and quality were better than those of the commercial shrimp chitosan. The new methodology has successfully extracted chitosan from P. clarkii in a good quality and high purity, achieving 89% deacetylation, high solubility, high purity, and medium molecular weight. Analysis of the different chitosan samples with Fourier transform infrared spectroscopy (FTIR), atomic force microscopy, Raman spectrum referred indicated high similarity between the chitosan different types, regardless of its source. The 3D image of P. clarkii showed the distance between the highest and most profound points of extracted chitosan is 728.94 nm, revealing homogeneous, smooth surfaces, apparently free of pores and cracks. FTIR and Raman spectrum of P. clarkii indicated various functional groups, e.g., alcohol, amines, amides, and phenols. These active groups are responsible for about 60% of the antioxidant activity of that product. Evaluating the quality traits indicated the excellence of the chitosan prepared from P. clarkii, especially in color, viscosity, and antioxidant activity, nominating it for different food applications.  相似文献   

4.
Poly(itaconic acid) grafted and/or Fe(III) ions incorporated chitosan membranes were used for reversible immobilization of catalase (from bovine liver) via adsorption. The influences of pH and initial catalase concentration on the immobilization capacities of the CH-g-poly(IA) and CH-g-poly(IA)-Fe(III) membranes have been investigated in a batch system. Maximum catalase adsorption onto CH-g-poly(IA) and CH-g-poly(IA)-Fe(III) membrane were found to be 6.3 and 37.8 mg/g polymer at pH 5.0 and 6.5, respectively. The CH-g-poly(IA)-Fe(III) membrane with high catalase adsorption capacity was used in the rest of the study. The Km value for immobilized catalase on CH-g-poly(IA)-Fe(III) (25.8 mM) was higher about 1.6-fold than that of free enzyme (13.5 mM). Optimum operational temperature was observed at 40 °C, a 5 °C higher than that of the free enzyme and was significantly broader. The optimum operational pH was same for both free and immobilized catalase (pH 7.0). Thermal stability was found to increase with immobilization. Free catalase lost all its activity within 20 days whereas immobilized catalase lost 23% of its activity during the same incubation period. It was observed that the same support enzyme can be repeatedly used for immobilization of catalase after regeneration without significant loss in adsorption capacity or enzyme activity. In addition, the CH-g-poly(IA)-Fe(III) membrane prepared in this work showed promising potential for various biotechnological applications.  相似文献   

5.
Proton conducting biopolymer networks have potential use for bio-sensors. The cost-effective, non-hazardous and environmentally safe biopolymer, such as chitosan, is an attractive feature for bio-sensors. Cholesterol oxidase was immobilized in conducting network via complexation of chitosan with alginic acid. A method for the preparation of the complex along with characterization by elemental analysis, FTIR spectroscopy, TGA and DSC were reported. The proton conductivity chitosan–alginic acid network was studied via impedance spectroscopy under humidified condition. The complex polymer electrolyte with x = 1 exhibited maximum proton conductivity of 1.4 × 10?3 S/cm at RT, RH  50%. The potential use of this network in enzyme immobilization was studied by manufacturing cholesterol oxidase entrapped polymer networks. Additionally, the maximum reaction rate (Vmax) and Michaelis–Menten constant (Km) were investigated for the immobilized cholesterol oxidase. Also, temperature and pH optimization studies were performed, and operational stability and shelf life of the polymer network were examined.  相似文献   

6.
Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with a precise molecular structure, high geometric symmetry, and a large number of terminal groups. In this study, PAMAM was grafted onto the surface of silica by microwave irradiation and characterized by Fourier transform infrared spectroscopy and elemental analysis. A novel immobilized cellulase was developed based on enzyme immobilization onto the prepared PAMAM-grafted silica and applied in microwave-assisted chitosan enzymolysis. The results show that the efficiency of cellulase immobilization increased with increasing generations of PAMAM. A high enzymatic hydrolysis efficiency was obtained for a 7 mg ml?1 chitosan solution at pH 6.2 and 50 °C with 40 W microwave-assisted enzymolysis (20 min) compared with a conventional enzymolysis protocol (3 h). The experimental results indicate that this rapid and efficient enzymolysis method combines the advantages of both PAMAM and microwave-assisted technology, which can be adapted to high-throughput enzyme assay in biochemical and clinical research.  相似文献   

7.
Different crude microbial proteases were applied for chitin extraction from shrimp shells. A Box–Behnken design with three variables and three levels was applied in order to approach the prediction of optimal enzyme/substrate ratio, temperature and incubation time on the deproteinization degree with Bacillus mojavensis A21 crude protease. These optimal conditions were: an enzyme/substrate ratio of 7.75 U/mg, a temperature of 60 °C and an incubation time of 6 h allowing to predict 94 ± 4% deproteinization. Experimentally, in these optimized conditions, a deproteinization degree of 88 ± 5% was obtained in good agreement with the prediction and larger than values generally given in literature. The deproteinized shells were then demineralized to obtain chitin which was converted to chitosan by deacetylation and its antibacterial activity against different bacteria was investigated. Results showed that chitosan dissolved at 50 mg/ml markedly inhibited the growth of most Gram-negative and Gram-positive bacteria tested.  相似文献   

8.
Chitin in the α and the β forms has been extracted from different marine crustacean from the Arabian Gulf. The contents of the various exoskeletons have been analyzed and the percent of the inorganic salt (including the various elements present), protein and the chitin was determined. Deacetylation of the different chitin produced was conducted by the conventional thermal heating and by microwave heating methods. Microwave heating has reduced enormously the time of heating from 6–10 h to 10–15 min, to yield the same degree of deacetylation and higher molecular weight chitosan. This technique can save massive amount of energy when implemented on a semi-industrial or industrial scale. The chitin and the obtained chitosan were characterized by elemental analysis, XRD, NMR, FTIR and thermogravimetric measurements. XRD analysis showed that chitosan has lower crystallinity than its corresponding chitin; meanwhile its thermal stability is also lower than chitin.  相似文献   

9.
This study aimed at isolation, purification and characterization of a chitosanase from Mucor circinelloides mycelium. The latter contains also a mycelium-bound lipase and lipids. The chitosanase and lipase were extracted from defatted M. circinelloides mycelium with a detergent and purified through a two-step procedure comprising chromatography on bacitracin–CNBr-Sepharose 4B and gel filtration on Sephadex G-100. Purification degree of the chitosanase (endo-type enzyme) and lipase was 23 and 12, respectively. These enzymes were optimally active at pH of 5.5–6.0 (chitosanase) and 7.2 (lipase in olive oil hydrolysis) and at 37 °C. Both purified enzymes were activated by Ca2+ and Mg2+ ions. The preferred substrates of chitosanase were chitosan preparations with a high degree of deacetylation. This enzyme showed no activity for colloidal chitin, Na-CMC and starch. SDS–PAGE of both purified enzymes showed two bands with molecular masses of 42 and 43 kDa. Our results suggest that M. circinelloides synthesizes an oligomeric (bifunctional) lipase which also efficiently depolymerizes chitosan.  相似文献   

10.
《Process Biochemistry》2014,49(10):1682-1690
Double enzymes (alcalase and trypsin) were effectively immobilized in a composite carrier (calcium alginate–chitosan) to produce immobilized enzyme beads referred to as ATCC. The immobilization conditions for ATCC were optimized, and the immobilized enzyme beads were characterized. The optimal immobilization conditions were 2.5% of sodium alginate, 10:4 sodium alginate to the double enzymes, 3:7 chitosan solution to CaCl2 and 2.5 h immobilization time. The ATCC beads had greatly enhanced stability and good usability compared with the free form. The ATCC residual activity was retained at 88.9% of DH (degree of hydrolysis) after 35 days of storage, and 36.0% of residual activity was retained after three cycles of use. The beads showed a higher zein DH (65.8%) compared with a single enzyme immobilized in the calcium alginate beads (45.5%) or free enzyme (49.3%). The ATCC kinetic parameters Vmax and apparent Km were 32.3 mL/min and 456.62 g−1, respectively. Active corn peptides (CPs) with good antioxidant activity were obtained from zein in the ethanol phase. The ATCC might be valuable for preparing CPs and industrial applications.  相似文献   

11.
Objective of this study is to realize appropriate enzyme immobilization onto a suitable support material and to develop a model which enables reactions catalyzed with different enzymes arranged in order. Thence, this model was potential for developing a multi-enzyme system. The reactions need more than one enzyme can be realized using immobilized form of them and the enzymes will be in one support at wanted activities. In this study, sodium alginate was used as immobilization material and glycidyl methacrylate was grafted onto sodium alginate. Thus reactive epoxy groups were added to sodium alginate which also has carboxyl groups. Average molecular weight of sodium alginate was determined using Ubbelohde viscosimetri. The molecular mass of sodium alginate was calculated as 15,900 Da. Graft polymerization was made in two steps. Firstly, sodium alginate was activated with benzophenone using UV-light at 254 nm. Secondly, glycidyl methacrylate was grafted under UV-light at 365 nm onto activated sodium alginate. Grafted glycidyl methacrylate was determined gravimetric and titrimetric. Additional groups after grafting were showed with FT-IR spectrum. 1-Ethyl-3-(3-dimetylaminopropyl)-carbodiimide was used for immobilization urease from carboxyl groups at pH 5.0. Suitable 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide/–COOH ratio was found 1/10 and immobilized product activity was 197 U/g support. Reaction medium pH was 8.0 for immobilization from epoxy group. Optimum immobilization reaction time was found as 2 h and immobilized product activity was 285 U/g support. Sequential immobilization of urease to glycidyl methacrylate grafted sodium alginate was made from –COOH and epoxy groups, respectively.  相似文献   

12.
《Process Biochemistry》2014,49(8):1332-1336
Keratinase from Purpureocillium lilacinum LPSC # 876 was immobilized on chitosan beads using two different cross-linking agents: glutaraldehyde and genipin. For its immobilization certain parameters were optimized such as cross-linker concentration, activation time and activation temperature. Under optimum conditions, enzyme immobilization resulted to be 96 and 92.8% for glutaraldehyde and genipin, respectively, with an activity recovery reaching up to 81% when genipin was used. The immobilized keratinase showed better thermal and pH stabilities compared to the soluble form, retaining more than 85% of its activity at pH 11 and 74% at 50 °C after 1 h of incubation. The residual activity of immobilized keratinase remained more than 60% of its initial value after five hydrolytic cycles. The results in this study support that glutaraldehyde could be replaced by genipin as an alternative cross-linking eco-friendly agent for enzyme immobilization.  相似文献   

13.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

14.
Production of chiral amines using ω-transaminases has been thoroughly studied in recent years. Immobilized ω-transaminases, however, have been used on relatively few occasions despite potential benefits such as reuse of enzyme and ease of product purification. In this study principally different methods including surface immobilization, entrapment and sweep flocculation using titanium oxide, Ca-alginate and chitosan respectively were evaluated for the immobilization of recombinant Escherichia coli cells. The enzyme expressed was a modified Arthrobacter citreus ω-transaminase with improved thermostability. The preparations were compared in terms of cell loading capacity, operational stability in repeated batches and storage stability using the conversion of methylbenzylamine to acetophenone.The use of chitosan for cell immobilization proved to be the method of choice since it was both very simple and effective. At a very high cell loading of 3.2 g cells/g chitosan >60% activity was observed. The preparation was reused in eight successive 1-h batches with >90% remaining activity. To further demonstrate its usability the preparation was used for asymmetric synthesis of (S)-4′-cyano-(α)-methylbenzylamine in three repeated bathes (cycle time >20 h), using isopropylamine as the amine donor. Storage stability was comparable with that of non-immobilized cells. It was concluded that the chitosan method due to its properties and simplicity would be advantageous for use also on a larger scale.  相似文献   

15.
Chitosan-based, defect-free nanofibers with average diameters ranging from 62 +/- 9 nm to 129 +/- 16 nm were fabricated via electrospinning blended solutions of chitosan and polyethylene oxide (PEO). Several solution parameters such as acetic acid concentration, polymer concentration, and polymer molecular weight were investigated to optimize fiber consistency and diameter. These parameters were evaluated using the rheological properties of the solutions as well as images produced by scanning electron microscopy (SEM) of the electrospun nanofibers. Generally, SEM imaging demonstrated that as total polymer concentration (chitosan + PEO) increased, the number of beads decreased, and as chitosan concentration increased, fiber diameter decreased. Chitosan-PEO solutions phase separate over time; as a result, blended solutions were able to be electrospun with the weakest electric field and the least amount of complications when solutions were electrospun within 24 h of initially being blended. The addition of NaCl stabilized these solutions and increased the time the blended solutions could be stored before electrospinning. Pure chitosan nanofibers with high degrees of deacetylation (about 80%) were unable to be produced. When attempting to electrospin highly deacetylated chitosan from aqueous acetic acid at concentrations above the entanglement concentration, the electric field was insufficient to overcome the combined effect of the surface tension and viscosity of the solution. Therefore, the degree of deacetylation is an extremely important parameter to consider when attempting to electrospin chitosan.  相似文献   

16.
The effect of bleached chitin, 66% and 91% deacetylated chitosan, respectively, as well as some aminosugars on in vitro radial growth of several phytopathogenic oomycetes and deuteromycets was studied In contrast to chitin, chitosan was inhibitory to the fungi The antifungal activity depended on the degree of deacetylation, the particle diameter of the polymer, the growth medium and the pH. Likewise, deacetylation of the monomers different media varied, indicating a possible counteraction by the carbohydrate sources.  相似文献   

17.
The synthetic activity of lipases in biphasic o/w systems was investigated with respect to their use in the synthesis of polyester chains via transesterification reactions. Lipase-catalyzed ring-opening polymerization (ROP) of pentadecalactone (ω-PDL) dispersed in water was used as a model reaction to understand the synthetic activity of lipases in biphasic o/w system. We conducted a systematic investigation of the influence of reaction conditions on the macromolecular characteristics of oligo(ω-PDL) encompassing chemical, thermophysical and colloidal properties of the reaction medium. A model was proposed assuming Michaelis–Menten interfacial kinetics followed by chain extension via lipase-catalyzed linear polycondensation. The solidification of oligo(ω-PDL) chains with a degree of polymerization of approximately three was identified as a major factor limiting the molecular weight of obtained oligomers to ∼870 g mol−1, despite the fast reaction rate and complete conversion of ω-PDL. The addition of toluene into the dispersed phase at a volumetric ratio of 0.3–0.5 of toluene to ω-PDL allowed us to circumvent this problem and increase the molecular weight of obtained oligomers up to 1460 g mol−1. The molecular weight of polymer product according to this model was thus inversely related to the weight ratio percentage of interfacial lipase PS to ω-PDL per droplet and correspondingly correlated with the activity of lipase. Taking into account all these parameters allowed increasing the molar mass of oligo(ω-PDL) from 870 g mol−1 to 3507 g mol−1.  相似文献   

18.
Five kinds of spacer arm attached chitosan hybrid hydrogels were tested for the possibility of being used as carriers for the immobilization of hydroperoxide lyase from amaranthus tricolor leaves. The 1,6-hexamethylenediamine attached chitosan-κ-carrageenan with biomimetic hydrophobic surface was proved to be the most suitable carrier. A maximum activity of 7.49 ± 0.19 U/g and a yield of 95% were obtained under optimized coupling condition. Meanwhile, the affinity between enzyme and substrates was not reduced after immobilization, as evidenced by the fact that the Km value of hydroperoxide lyase decreased from 108.6 to 79.97 μM for 13-hydroperoxy-linoleic-acid and almost unchanged for 13-hydroperoxy-linolenic-acid. Furthermore, the thermal, operational and storage stabilities of HPL were significantly improved after immobilization. Using the immobilized enzyme as the catalyst, the yield of 2(E)-hexenal and hexanal reached 1374.8 ± 51.8 mg/L and 1987.9 ± 67.9 mg/L, respectively, and the amount of immobilized enzyme needed in the reaction mixture was much lower than its free counterpart.  相似文献   

19.
Extracellular chitosanase produced by Amycolatopsis sp. CsO-2 was purified to homogeneity by precipitation with ammonium sulfate followed by cation exchange chromatography. The molecular weight of the chitosanase was estimated to be about 27,000 using SDS-polyacrylamide gel electrophoresis and gel filtration. The maximum velocity of chitosan degradation by the enzyme was attained at 55°C when the pH was maintained at 5.3. The enzyme was stable over a temperature range of 0–50°C and a pH range of 4.5–6.0. About 50% of the initial activity remained after heating at 100°C for 10 min, indicating a thermostable nature of the enzyme. The isoelectric point of the enzyme was about 8.8. The enzyme degraded chitosan with a range of deacetylation degree from 70% to 100%, but not chitin or CM-cellulose. The most susceptible substrate was 100% deacetylated chitosan. The enzyme degraded glucosamine tetramer to dimer, and pentamer to dimer and trimer, but did not hydrolyze glucosamine dimer and trimer.  相似文献   

20.
In this study raw starch digesting amylase (RSDA) from Aspergillus carbonarius (Bainier) Thom IMI 366159 was stabilized by covalent binding on polyglutaraldehyde (PG), glutaraldehyde (G) activated chitosan beads or post immobilization cross linking of enzyme adsorbed on chitosan. Presence of Ca2+ ions (0.5–1.5 mM) activated the PG and G derivatives but repressed the crosslinked enzyme. Optimum pH for cross linked derivative increased by 2 units but was unaltered for PG and G derivatives. Immobilized amylase exhibited improved thermal and storage stability. Immobilized derivatives had no loss of activity after 1 month storage and retained above 90% activity after 10 batch reactions of 60 min each. Immobilization successfully stabilized RSDA and immobilized enzyme from A. carbonarius can be applied in numerous industries for cheap, cost effective and environmentally friendly starch hydrolytic processes to simple sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号