首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ecological Engineering》2006,26(3):272-282
A full-scale constructed wetlands system with a total area of 80 ha and treatment capability of 2.0 × 104 m3 d−1 was completed in October 1998 in Rongcheng, Shandong Province, China. To evaluate wastewater treatment effectiveness and seasonal performance of the system, water samples were collected and analyzed from January 1999 to December 2004. Comparison of mean inlet and outlet concentrations showed that the constructed wetland system could effectively reduce the output of SS (71.8 ± 8.4%), BOD5 (70.4 ± 9.6%), COD (62.2 ± 10.1%), total coliform (99.7%) and fecal coliform (99.6%). However, the percent reduction of ammonia nitrogen was relatively low (40.6 ± 15.3%), and total phosphorus showed the least efficient reduction (29.6 ± 12.8%). BOD5, COD, ammonia nitrogen, and total phosphorus removal efficiencies displayed seasonal variations. BOD5 and COD removal was more efficient in spring and summer than in autumn and winter whereas ammonia nitrogen and total phosphorus removal was more efficient in summer and autumn than in spring and winter. Annual variation analysis shows that COD, BOD5, and ammonia nitrogen reduction efficiencies increased from 1999 to 2004. In contrast, mean total phosphorus reduction efficiency did not change from 2001 to 2002 and began to decrease from 2003 onwards.  相似文献   

2.
This study evaluated the ethanol addition as a strategy for start-up and acclimation of a pilot scale (1300 L) anaerobic sequencing batch biofilm reactor (AnSBBR) for the treatment of municipal landfill leachate with seasonal biodegradability variations. The treatment was carried out at ambient temperature (23.8 ± 2.1 °C) in the landfill area. In a first attempt, the leachate collected directly from landfill showed to be predominantly recalcitrant to anaerobic treatment and the acclimation was not possible. In a second attempt, adding ethanol to leachate, the reactor was successfully acclimated. After acclimation, without ethanol addition, the CODTotal influent ranged from 4970 to 13040 mg L?1 and the removal efficiencies ranged from 12.1% to 70.7%. A final test was carried out increasing the ammonia and free-ammonia concentration from 2486 mgN L?1 and 184 mgN L?1 to 4519 mgN L?1 and 634 mgN L?1, respectively, with no expressive inhibition verified. The start-up strategy was found to be feasible, providing the acclimation of the biomass in the AnSBBR, and maintaining the biomass active even when the leachate was recalcitrant.  相似文献   

3.
Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527 mA/m2 and 230 mW/m2 in the anode area, respectively, at operation organic loading (OLR) of 0.364 g COD/l.d. At OLR of 0.182 g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475 V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs.  相似文献   

4.
Simultaneous carbon and nitrogen removal using loop configuration microbial fuel cell (MFC) with relatively large size of 5 L was investigated in this study. Four MFC reactors were constructed with a loop configuration to eliminate the pH gradient, and the reactor performance was examined with different separators and cathode materials. The performance of the reactors in terms of electricity generation and contaminant removal rate was examined. Results showed that a maximum power density of 1415.6 mW/m3 (The empty bed volume of anode chamber) was obtained at a current density of 3258.5 mA/m3 with cation exchange membrane as separator and graphite felt (Pt coated) as cathode using the piggery wastewater as feed, and the organic removal rate obtained was approximately 0.523 kg COD/m3/d (total anode chamber) with nitrogen removal rate of 0.194 kg N/m3/d (total cathode chamber).  相似文献   

5.
The life-cycle greenhouse gaseous emissions and primary exergy resources consumption associated with a horizontal subsurface flow constructed wetland (HSSF) were investigated. The subject of study was a wetland for municipal wastewater treatment with a 700-person-equivalent capacity. The effects of two types of emergent aquatic macrophytes (Phragmites australis and Schoenoplectus californicus) and seasonality on greenhouse gas (GHG) gas emissions, the environmental remediation cost (ERC) and the specific environmental remediation cost (SERC) were assessed. The results indicate that GHG emissions per capita (12–22 kgCO2eq/p.e/yr) and primary exergy resources consumed (24–27 MJ/m3) for the HSSF are lower than those of a conventional wastewater treatment plant (67.9 kgCO2eq/p.e/yr and 96 MJ/m3). The SERC varied between 176 and 216 MJ/kg biological oxygen demand (BOD5) removal, which should be further reduced by 20% for an improved BOD5 removal efficiency above 90%. The low organic matter removal efficiency is associated with a high organic load and low bacterial development. Seasonality has a marked effect on the organic removal efficiency and the SERC, but the macrophyte species does not.  相似文献   

6.
Anaerobic bioenergy production processes including fermentative biohydrogen (BioH2), anaerobic digestion (AD) and bioelectrochemical system have been investigated for converting municipal waste or various biomass feedstock to useful energy carriers. However, the performance of a microbial fuel cell (MFC) fed on the effluent from a two-stage biogas production process has not yet been investigated extensively in continuous reactor operation on complex substrates. In this study we have investigated the extent to which a microbial fuel cell (MFC) can reduce COD and recover further energy from the effluent of a two-stage biohydrogen and biomethane system. The performance of a four-module tubular MFC was determined at six different organic loadings (0.036–6.149 g sCOD L−1 d−1) in terms of power generation, COD removal efficiency, coulombic efficiency (CE) and energy conversion efficiency (ECE). A power density of 3.1 W m−3 was observed at the OLR = 0.572 g sCOD L−1 d−1, which resulted in the highest CE (60%) and ECE (0.8%), but the COD removal efficiency decreased at higher organic loading rates (35.1–4.4%). The energy recovery was 92.95 J L−1 and the energy conversion efficiency, based on total influent COD was found to be 0.48–0.81% at 0.572 g sCOD L−1 d−1. However, the energy recovery by the MFC is only reported for a four-module reactor and improved performance can be expected with an extended module count, as chemical energy remained available for further electrogenesis.  相似文献   

7.
Nitrogen transformations were studied in flooded and non-flooded vertical flow columns with and without a rice plant. Influent (average concentration: NH4+-N: 40 mg L?1; NO3?-N: 0.15 mg L?1; and NO2?-N: 4.0 mg L?1) was supplied at 1.25 cm d?1 during stage 1 (20 May–5 August) and at 2.50 cm d?1 at stage 2 (6 August–26 October), which resulted in an average nitrogen loading of 156 g m?2 during the entire experimental period. Total nitrogen (T-N) removal efficiencies exceeded 90% in vertical flow systems with rice plants. Nitrogen assimilated by the rice plants in the flooded column accounted for 60% of the total input nitrogen, while that in the non-flooded column accounted for 36% of the total input. The remaining nitrogen appeared to be removed through biogeochemical pathways. Although some nitrogen flowed out, most input nitrogen was also removed even in the flooded and non-flooded unplanted columns.A high-resolution vertical distribution investigation showed the changes of nitrogen forms in soil water. In the flooded condition, there were high ammonium and high nitrite concentrations in the upper layers. The concentrations of ammonium and nitrite simultaneously decreased with depth increasing, suggesting that anaerobic ammonia oxidation (anammox) may occur in these anaerobic conditions. In contrast, the distributions of nitrogen in the non-flooded columns with elevated water level suggested that nitrification–denitrification route was the major removal mechanism, whether or not rice plants were present.  相似文献   

8.
The performance of up-flow anaerobic sludge blanket (UASB) in combination with down-flow hanging sponge (DHS) system for sewage treatment at an average wastewater temperature of 15 °C has been investigated for 6 months. The results showed that a combined system operated at a total HRT of 10.7 h and total SRT of 88 days represents a cost effective sewage treatment process. The average CODtotal and BOD5 total concentrations measured in the final effluent of the total system (UASB + DHS) amounted to 43 and 3.0 mg/l, respectively, corresponding to the overall removal efficiency of 90% for CODtotal and 98% for BOD5 total. The total process provided a final effluent containing a low concentration of 12 mg/l for TSS.Eighty-six percent of ammonia was eliminated at space loading rate of 1.6 kg COD/m3 d and HRT of 2.7 h. The calculated nitrification rate of the DHS system according to the nitrate and nitrite production amounted to 0.18 kg/m3 d. The removal of F. coliform in the UASB reactor only amounted to 0.86 log10. On the other hand, the F. coliform concentration dropped substantially, i.e. by 2.6 log10 in the DHS system resulting only 2.7 × 103/100 ml in the final effluent.The calculated average sludge production for UASB operated at an HRT of 8.0 h amounted to 30 g TSS/d, corresponding to sludge yield coefficient of 0.2 g TSS/g total COD removed, while it was indeed very low only 6.0 g TSS/d corresponding to sludge yield coefficient of 0.09 g TSS/g total COD removed, for DHS system.The DHS profile results revealed that in the first and second segment of DHS system, the CODtotal, BOD5 total and TSS was eliminated, followed by the oxidation of ammonia in the next segments.  相似文献   

9.
The properties and behaviour of solids retained in a pilot plant constituted of an up-flow anaerobic sludge blanket (UASB) reactor and two constructed wetlands (CWs) were monitored over a 3-year period. The UASB (25.5 m3) was fed with raw municipal wastewater at a flow rate of 61–112 m3 d?1 and a volumetric loading rate (VLR) of 0.75–1.70 kg TCOD m?3 d?1. The CWs (75 m2 each) were operated in series and received a fraction (17–20 m3 d?1) of the UASB effluent. The applied surface loading rates (SLR) were in the range of 3800–8700 g TCOD m?2 d?1 (UASB) and 11–15 g BOD5 m?2 d?1 (CWs). The overall system removed 95% TSS, 85% TCOD and 87% BOD5 on average. For influent VSS, the UASB removed 72.1% and gave a hydrolysis of 63.5%, while the average surplus sludge generation was 8.7%. Over the 3-year period, TSS and VSS accumulated in the CWs at rates of 1.07 and 0.56 kg m?2 year?1, respectively. The aerobic biodegradability of the accumulated solids ranged from 23 to 92 mg O2 g VSS?1 d?1 and increased downstream in the CWs. About 59% of the VSS that entered the CWs was removed by hydrolysis, while 24% accumulated on granular media. These low solids accumulation rates were especially remarkable considering the high COD and BOD5 loading rates applied. The system lay-out appear to be promising in terms of preventing clogging.  相似文献   

10.
Three Microbial Fuel Cells (MFCs) were fluidically connected in series, with a single feed-line going into the 1st column through the 2nd column and finally as a single outflow coming from the 3rd column. Provision was also made for re-circulation in a loop (the outflow from the 3rd column becoming the feed-line into the 1st column) in order to extend the hydraulic retention time (HRT) on treatment of landfill leachate. The effect of increasing the electrode surface area was also studied whilst the columns were (fluidically) connected in series. An increase in the electrode surface area from 360 to 1080 cm2 increased the power output by 118% for C2, 151% for C3 and 264% for C1. COD and BOD5 removal efficiencies also increased by 137% for C1, 279% for C2 and 182% for C3 and 63% for C1, 161% for C2 and 159% for C3, respectively. The system when configured into a loop was able to remove 79% of COD and 82% of BOD5 after 4 days. These high levels of removal efficiency demonstrate the MFC system’s ability to treat leachate with the added benefit of generating energy.  相似文献   

11.
The effects of three different inocula (domestic wastewater, activated sludge, and anaerobic sludge) on the treatment of acidic food waste leachate in microbial fuel cells (MFCs) were evaluated. A food waste leachate (pH 4.76; 1000 mg chemical oxygen demand (COD)/L) was used as the substrate. The results indicate that the leachate itself can enable electricity production in an MFC, but the co-addition of different inocula significantly reduces the start-up time (approximately 7 days). High COD and volatile fatty acids removal (>87%) were obtained in all MFCs but with only low coulombic efficiencies (CEs) (14–20%). The highest power (432 mW/m3) and CE (20%) were obtained with anaerobic sludge as the co-inoculum. Microbial community analysis (PCR-DGGE) of the established biofilms suggested that the superior performance of the anaerobic sludge-MFC was associated with the enrichment of both fermentative (Clostridium sp. and Bacteroides sp.) and electrogenic bacteria (Magnetospirillum sp. and Geobacter sp.) at the anode.  相似文献   

12.
The catalytically oxidized olive mill wastewater (OMW) was subjected to continuous anaerobic treatment using two treatment schemes. The 1st step in both schemes was an up-flow anaerobic sludge blanket (UASB) reactor (2 0 l). The 2nd step was either a hybrid UASB reactor or a classical one (1 0 l, each). The 1st stage was operated at constant hydraulic retention time (HRT) of 24 h. The organic loading rate (OLR) varied from 3.4 to 4.8 kgCOD/m3 d depending on the quality of the pretreated wastewater. The results obtained indicated that, the 1st step UASB reactor achieved a COD percentage removal value of 53.9%. Corresponding total BOD5 and TSS removal were 51.5% and 68.3%, respectively.The results obtained indicated that the hybrid UASB reactor as a 2nd step produced better quality effluent as compared to the classical one. This could be attributed to the presence of the packing curtain sponge with active biomass in the sedimentation part of hybrid UASB reactor which minimizes suspended solids washout, consequently enhancement of the efficiency of the reactor.Available data showed that a two stage system consisting of a classical and a hybrid UASB reactor operated at a total HRT of 48 h and OLR of 2.0 kgCOD/m3 d provided promising results. Removal values of CODtotal, BOD5 total, TOC, VFA, oil and grease were 83%, 84%, 81%, 93% and 81%, respectively. Based on the available data, the use of a two stage anaerobic system consisting of a classical UASB reactor followed by a hybrid UASB as a post-treatment step for catalytically oxidized OMW is recommended.  相似文献   

13.
The treatment capacity of constructed wetlands is expected to be high in tropical areas because of the warm temperatures and the associated higher rates of microbial activity. A pilot scale horizontal subsurface flow constructed wetland system filled with river sand and planted with Phragmites vallatoria (L.) Veldkamp was set up in the southern part of Vietnam to assess the treatment capacity and the removal rate kinetics under tropical conditions. The system received municipal wastewater at four hydraulic loading rates (HLRs) of 31, 62, 104 and 146 mm day?1. Removals of TSS, BOD5 and COD were efficient at all HLRs with mean removal rates of 86–95%, 65–83% and 57–84%, respectively. Removals of N and P decreased with HLRs and were: NH4-N 0–91%; TN 16–84% and TP 72–99%. First-order area-based removal rate constants (k, m year?1) estimated from sampling along the length of the wetland from inlet to outlet at the four HLRs were in the range of 25–95 (BOD5), 22–30 (COD), 31–115 (TSS), 5–24 (TN and TKN) and 41–84 (TP) at background concentrations (C*) of 5, 10, 0, 1.5 and 0 mg L?1, respectively. The estimated k-values should not be used for design purposes, as site-specific differences and stochastic variability can be high. However, the study shows that domestic wastewater can be treated in horizontal subsurface flow constructed wetland systems to meet even the most stringent Vietnamese standards for discharge into surface waters.  相似文献   

14.
In this study, a single chamber microbial fuel cell (MFC) with a rotating biocathode is developed to simultaneously remove chemical oxygen demand (COD) and nitrogen accompanying current production. Under continuous regime with a feeding COD/N ratio of 5:1, removal efficiencies of total organic carbon (TOC) and total nitrogen (TN) were 85.7 ± 7.4% and 91.5 ± 7.2%, respectively, and a maximum power output of 585 mW m?3 was yielded. In the batch tests, TN removal efficiencies for closed/open circuit were 82.1 ± 0.5% and 59.4 ± 3.3%, respectively. Cyclic voltammetry measurements demonstrated that the biocathode could efficiently catalyze nitrate reduction reaction. Autotrophic denitrification facilitated nitrogen removal using the electrode as electron donor. 16S rRNA-denaturing gradient gel electrophoresis (DGGE) was employed for community fingerprinting. At the biocathode the bacteria involved in nitrogen cycle predominated, of which the denitrifying bacteria were closely similar to Acidovorax sp. and/or Delftia sp. They were affiliated with the family Comamondaceae. The combination of rotating biological contactors with MFCs derives a promising opportunity for wastewater treatment with a low cost and high quality effluent.  相似文献   

15.
Low-cost and simple technologies are needed to reduce watershed export of excess nitrogen to sensitive aquatic ecosystems. Denitrifying bioreactors are an approach where solid carbon substrates are added into the flow path of contaminated water. These carbon (C) substrates (often fragmented wood-products) act as a C and energy source to support denitrification; the conversion of nitrate (NO3?) to nitrogen gases. Here, we summarize the different designs of denitrifying bioreactors that use a solid C substrate, their hydrological connections, effectiveness, and factors that limit their performance. The main denitrifying bioreactors are: denitrification walls (intercepting shallow groundwater), denitrifying beds (intercepting concentrated discharges) and denitrifying layers (intercepting soil leachate). Both denitrifcation walls and beds have proven successful in appropriate field settings with NO3? removal rates generally ranging from 0.01 to 3.6 g N m?3 day?1 for walls and 2–22 g N m?3 day?1 for beds, with the lower rates often associated with nitrate-limitations. Nitrate removal is also limited by the rate of C supply from degrading substrate and removal is operationally zero-order with respect to NO3? concentration primarily because the inputs of NO3? into studied bioreactors have been generally high. In bioreactors where NO3? is not fully depleted, removal rates generally increase with increasing temperature. Nitrate removal has been supported for up to 15 years without further maintenance or C supplementation because wood chips degrade sufficiently slowly under anoxic conditions. There have been few field-based comparisons of alternative C substrates to increase NO3? removal rates but laboratory trials suggest that some alternatives could support greater rates of NO3? removal (e.g., corn cobs and wheat straw). Denitrifying bioreactors may have a number of adverse effects, such as production of nitrous oxide and leaching of dissolved organic matter (usually only for the first few months after construction and start-up). The relatively small amount of field data suggests that these problems can be adequately managed or minimized. An initial cost/benefit analysis demonstrates that denitrifying bioreactors are cost effective and complementary to other agricultural management practices aimed at decreasing nitrogen loads to surface waters. We conclude with recommendations for further research to enhance performance of denitrifying bioreactors.  相似文献   

16.
Palm oil mill effluent (POME) with average chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of 70,000 and 30,000 mg/L, respectively, can cause serious environmental hazards if discharged untreated. There are conventional palm oil mill effluent (POME) treatment systems that require large footprint, long HRT and fail to meet the Malaysian Department of Environment (DOE) discharge limit. Hence, the current research is aimed to design a novel integrated anaerobic–aerobic bioreactor (IAAB) for POME treatment in order to overcome these shortcomings of the conventional system. IAAB is a new bioreactor configuration which integrates anaerobic and aerobic digestion in one reactor. The overall removal efficiencies in steady state condition in terms of chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) were more than 99% at the organic loading rate (OLR) of 10.5 g COD/L day with methane yield of 0.24 L CH4/g COD removed. The effluent quality remained stable (BOD < 70 mg/L) and complied with the discharge limit (BOD < 100 mg/L). Overall, the IAAB system exhibited good stability and pH adjustment was unnecessary. The results show that the IAAB achieves higher performance in terms of organic removal efficiency and methane yield at higher OLR and shorter HRT as compared to the conventional system. Further evaluations of its long-term performance are proposed for the subsequent study.  相似文献   

17.
The main objective of this study was to determine the treatment capacity of well-mineralized peat in vertical and horizontal flow filters designed to reduce phosphorus, nitrogen and organic matter in municipal wastewater from the town of Tapa and landfill leachate in Väätsa, Estonia. Two identically designed onsite experiments were conducted using the following filter systems: (a) a vertical flow (VF) peat filter, (b) a vertical flow peat/ash sediment filter (both materials in equal volumes) followed by a horizontal flow (HF) peat filter. Sphagnum peat and hydrated oil-shale ash (ash sediment) was used. In our experiments, one treated municipal wastewater over 6 months and another treated landfill leachate over 12 months. In both cases, effluent from a conventional treatment (aerated activated sludge treatment) plant was used. The median value of total phosphorus (TP) concentration in Väätsa landfill leachate was 3.4 mg P L?1 and in municipal wastewater from Tapa 4.9 mg P L?1. The reduction of TP in VF peat filters during the first 6 months was 58% and 63%, and in peat/ash sediment filters 94% and 67% for the Tapa experiment and the Väätsa experiment, respectively. Both experiments demonstrated that the P-removal efficiency in VF peat filters begins to decrease after 6 months of operation. The purification efficiency in HF filters fluctuated, and no significant removal of TP was found. In the removal of organic matter (BOD, COD values) and nitrogen, the best results were obtained in VF peat filters.  相似文献   

18.
Microbial fuel cell (MFC) could be an efficient sludge treatment unit in regard of rates and extents of total chemical oxygen demand (TCOD) removal, particularly when ultrasound was applied to pretreat the sludge. This study characterized the organic matter in sludge before and after MFC treatment, with or without ultrasound as a pretreatment stage. The 5-d MFC tests with electric load significantly enhanced TCOD removal rate from 11.3% to 19.2% for raw sludge and from 25% to 57% for sludge pretreated with >0.6 W ml?1 ultrasound, using conventional anaerobic digestion test (without electric load) as control. The aromatic proteins, soluble microbial byproduct-like fluorescent compounds and carboxylic components, aliphatic components (C–H related), hydrocarbon and carbohydrate materials were identified to be principally released by ultrasound pretreatment and the fuels in the present MFC study.  相似文献   

19.
This paper analyses the purification efficiency and mass removal of organic material, suspended solids, nitrogen and phosphorus in a hybrid constructed wetland (CW) system treating wastewater from a basic school in Paistu, Estonia. The CW consists of two subsurface flow filter beds using lightweight aggregates (LWA): a two-chamber vertical subsurface flow (VSSF) filter bed followed by a horizontal subsurface flow (HSSF) filter bed, with a total area of 432 m2. This CW was constructed in summer 2002 by the Centre for Ecological Engineering in Tartu (CEET). Eighteen series of water samples (from 30.10.2003 to 15.10.2005) were undertaken. The analyses show the outstanding purification effect of the system: for BOD7 the average purification efficiency is 91%; for total suspended solids (TSS)—78%, for total P—89%, for total N—63%, and for NH4N—77%. The average outlet values for the above-listed parameters were 5.5, 7.0, 0.4, 19.2 and 9.1 mg L−1, respectively. According to our results, the purification parameters meet the standards set by the Water Act of Estonia for wastewater treatment plants of 2000–9999 PE: 15, 25, and 1.5 mg L−1 for BOD7, TSS and total P, respectively. The results show that hybrid CW systems consisting of subsurface flow filter beds can work efficiently in conditions of changing hydraulic loading and relatively cold climate. We did not find significant differences between the removal efficiency, mass removal, and values of the first-order rate-constant k for most water quality indicators during the warm (May–October) and cold (November–April) periods. Locally produced LWA as a filter material in CWs has shown good hydraulic conductivity and phosphorus sorption capacity (k = 17.1 ± 12.4 m yr−1). The Paistu CW, with its proper design and outstanding purification results, can be considered one of the best systems in Estonia.  相似文献   

20.
The effects of lowering the operational pH from 6 to 5 on mesophilic (30 °C) sulfate reduction during the acidification of sucrose at an organic loading rate of 5 gCOD (lreactor d)−1 and at a COD/SO42− ratio of 4 were evaluated in a CSTR and in a UASB reactor. The HRT was 24 h and 10 h, respectively. Acidification was complete in both reactors at pH 6 and the lowering of the operational pH to 5 did not affect the acidification efficiency in the CSTR but decreased the acidification efficiency of the UASB to 72%. The decrease to pH 5 caused an increase in the effluent butyrate and ethanol concentrations in both reactors. Lowering the pH from 6 to 5 caused a decrease in sulfate reduction efficiencies in both reactors, from 43% to 25% in the CSTR and from 95% to 34% in the UASB reactor. The acidification and sulfate reduction efficiencies at pH 5 could be increased to 94% and 67%, respectively, by increasing the HRT of the UASB reactor to 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号