首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, the electrocatalytic oxidation of morphine (MO) at an optically transparent indium tin oxide (ITO) electrode modified by an electrodeposited Prussian blue (PB) thin film is first demonstrated, and the amperometric detection of MO was then investigated. Experimental results showed that the thin film on the ITO surface, confined to the PB/Berlin green (BG) redox pair, can serve as an excellent mediator which facilitates electron transfer and considerably lowers the overpotential required, as compared to a bare ITO electrode. Thus, PB can be regarded as a promising artificial peroxidase for MO. The rate of such an electrocatalytic reaction is pH dependent with the highest value at pH 5. By potential-step excitation from 0.55 to 0.70 V, a linear calibration curve, displaying the relationship between steady-state currents and MO concentrations (ranging from 0.09 to 1.0 mM), was obtained. The detection sensitivity is about 16.8 microA/cm2 mM. Most importantly, the method described herein can readily discriminate MO analogs lacking the phenolic -OH group, such as codeine, and can thus benefit the specific recognition of MO.  相似文献   

2.
Gao D  Hu J  Yang M  Li Q 《Analytical biochemistry》2006,358(1):70-75
A novel COOH+ ion implantation-modified indium tin oxide (COOH/ITO) electrode was prepared for the first time and applied for determination of daunomycin (or daunorubicin [DNR]). The electrode showed higher catalytic activity than bare ITO electrode with good reproducibility and stability. The determination condition of linear voltammetry was optimized. A calibration curve was obtained over the range 2.0 x 10(-7) to 5.0 x 10(-6)mol/L, with a correlation coefficient of 0.9909 and a limit of detection of 1.0 x 10(-7)mol/L. The selectivity of the electrode was illustrated by determination of DNR in samples prepared of urine. X-ray photoelectron spectroscopy (XPS) analysis results showed that the implanted COOH+ maintained characteristics of organic group -COOH. A field emission-scanning electron microscope (FSEM) result showed that the implanted surface caused defects and partial dislocations and formed many active centers.  相似文献   

3.
In order to measure the substrate-oxidizing activity of intact cells of Acetobacter pasteurianus no. 2, a given amount of the bacterial cells was immobilized on a carbon-paste electrode, and the current at the electrode was measured in a buffer solution. When Fe(CN)3− 6 was added to the buffer solution, an anodic current was observed at 0.5 V (against Ag/AgCl). Further, when ethanol was added to the solution, the current started to increase to reach a steady-state within 3 min. The electrode had a good response to acetaldehyde and lactic acid as well as ethanol. Culture conditions affected the current response to various substances; the response of the electrode modified with the cells grown in static culture was much higher than that of the electrode with the cells grown in shaking culture, and the electrode with ethanol-grown cells had a high response to ethanol and acetaldehyde compared with that of the electrode with glucose-grown cells. The increase in the amount of the current after the addition of ethanol (ΔI EtOH) was linearly proportional to the total number of immobilized cells per electrode in the range 1.0 × 104–1.0 × 108 cells. The ΔI EtOH values were measured with the electrode prepared with a fixed volume of the cell suspensions taken from the culture at 6-h intervals; the dependence of the ΔI EtOH value on time agreed well with the cell growth measured by colony counting and turbidity in the lag and logarithmic phase. After the logarithmic phase, the value of ΔI EtOH sharply decreased, resembling to the growth measured by colony counting, rather than by turbidity. Received: 30 October 1998 / Received revision: 2 February 1999 / Accepted: 5 February 1999  相似文献   

4.
A sensor capable of detecting a specific DNA sequence was designed by bulk modification of a graphite epoxy composite electrode with streptavidin (2% w/w). Streptavidin is used to immobilise a biotinylated capture DNA probe to the surface of the electrode. Simultaneous hybridisation occurs between the biotin DNA capture probe and the target-DNA and between the target-DNA and a digoxigenin modified probe. The rapid binding kinetic of streptavidin-biotin allows a one step immobilisation/hybridisation procedure. Secondly, enzyme labelling of the DNA duplex occurs via an antigen-antibody reaction between the Dig-dsDNA and an anti-Dig-HRP. Finally, electrochemical detection is achieved through a suitable substrate (H2O2) for the enzyme-labelled duplex. Optimisation of the sensor design, the modifier content and the immobilisation and hybridisation times was attained using a simple nucleotide sequence. Regeneration of the surface is achieved with a simple polishing procedure that shows good reproducibility. The generic use of a modified streptavidin carbon-polymer biocomposite electrode capable of surface regeneration and a one step hybridisation/immobilisation procedure are the main advantages of this approach. In DNA analysis, this procedure, if combined with the polymerase chain reaction, would represent certain advantages with respect to classical techniques, which prove to be time consuming in situations where a simple and rapid detection is required. This innovative developed material may be used for the detection of any analyte that can be coupled to the biotin-streptavidin reaction, as is the case of immunoassays.  相似文献   

5.
The determination of reduced nicotinamide adenine dinucleotide (NADH) by electrochemical oxidation requires a more positive potential than is predicted by the formal reduction potential for the NAD+/NADH couple. This problem is alleviated by use of 2,6-dichloroindophenol (DCIP) as a redox coupling agent for NADH. The electrochemical characteristics of DCIP at the glassy carbon electrode are examined by cyclic voltammetry and hydrodynamic voltammetry. NADH is determined by reaction with DCIP to form NAD+ and DCIPH2. DCIPH2 is then quantitated by flow-injection analysis with electrochemical detection by oxidation at a detector potential of +0.25 V at pH 7. NADH is determined over a linear range of 0.5 to 200 microM and with a detection limit of 0.38 microM. The lower detection potential for DCIPH2 compared to NADH helps to minimize interference from oxidizable components in serum samples.  相似文献   

6.
Woodyer R  van der Donk WA  Zhao H 《Biochemistry》2003,42(40):11604-11614
Homology modeling was used to identify two particular residues, Glu175 and Ala176, in Pseudomonas stutzeri phosphite dehydrogenase (PTDH) as the principal determinants of nicotinamide cofactor (NAD(+) and NADP(+)) specificity. Replacement of these two residues by site-directed mutagenesis with Ala175 and Arg176 both separately and in combination resulted in PTDH mutants with relaxed cofactor specificity. All three mutants exhibited significantly better catalytic efficiency for both cofactors, with the best kinetic parameters displayed by the double mutant, which had a 3.6-fold higher catalytic efficiency for NAD(+) and a 1000-fold higher efficiency for NADP(+). The cofactor specificity was changed from 100-fold in favor of NAD(+) for the wild-type enzyme to 3-fold in favor of NADP(+) for the double mutant. Isoelectric focusing of the proteins in a nondenaturing gel showed that the replacement with more basic residues indeed changed the effective pI of the protein. HPLC analysis of the enzymatic products of the double mutant verified that the reaction proceeded to completion using either substrate and produced only the corresponding reduced cofactor and phosphate. Thermal inactivation studies showed that the double mutant was protected from thermal inactivation by both cofactors, while the wild-type enzyme was protected by only NAD(+). The combined results provide clear evidence that Glu175 and Ala176 are both critical for nicotinamide cofactor specificity. The rationally designed double mutant might be useful for the development of an efficient in vitro NAD(P)H regeneration system for reductive biocatalysis.  相似文献   

7.
In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40s. Under the optimized conditions, the linear range was obtained from 5 to 100 microM with correlation coefficient of 0.998. The limit of detection (LOD) of 3.1 microM was obtained for lincomycin in the standard solution. We also applied this method to analyzing lincomycin in the urine matrix. The limit of detection of 9.0 microM was obtained. This method can determine lincomycin in the urine sample without pretreatment, which demonstrated that it is a promising method of detection of lincomycin in clinical and pharmaceutical area.  相似文献   

8.
Lin J  Qu W  Zhang S 《Analytical biochemistry》2007,360(2):288-293
Indium tin oxide (ITO) electrode is used to fabricate a novel disposable biosensor combined with flow injection analysis for the rapid determination of H2O2. The biosensor is prepared by entrapping horseradish peroxidase (HRP) enzyme in colloidal gold nanoparticle-modified chitosan membrane (Au-chitosan) to modify the ITO electrode. The biosensor is characterized by scanning electron microscope, atomic force microscope, and electrochemical methods. Parameters affecting the performance of the biosensor, including concentrations of o-phenylenediamine (OPD) and pH of substrate solution, were optimized. Under the optimal experimental conditions, H2O2 could be determined in the linear calibration range from 0.01 to 0.5 mM with a correlation coefficient of 0.997 (n=8). The amperometric response of the biosensor did not show an obvious decrease after the substrates were injected continuously 34 times into the flow cell. The prepared biosensor not only is economic and disposable, due to the low-cost ITO film electrode obtained from industrial mass production, but also is capable with good detection precision, acceptable accuracy, and storage stability for the fabrication in batch.  相似文献   

9.
10.
A three-dimensional (3D) continuous and interconnected network graphene foam (GF) was synthesized by chemical vapor deposition using nickel foam as a template. The morphologies of the GF were observed by scanning electron microscopy. X-ray diffraction and Raman spectroscopy were used to investigate the structure of GF. The graphene with few layers and defect free was closely coated on the backbone of the 3D nickel foam. After etching nickel, the GF was transferred onto indium tin oxide (ITO) glass, which acted as an electrode to detect uric acid using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The GF/ITO electrode showed a high sensitivity for the detection of uric acid: approximately 9.44 mA mM−1 in the range of 25 nM–0.1 μM and 1.85 mA mM−1 in the range of 0.1–60 μM. The limit of detection of GF/ITO electrode for uric acid is 3 nM. The GF/ITO electrode also showed a high selectivity for the detection of uric acid in the presence of ascorbic acid. This electrode will have a wide range of potential application prospects in electrochemical detection.  相似文献   

11.
A novel electroporation method using a capillary and wire-type electrode   总被引:1,自引:0,他引:1  
Electroporation is widely used to achieve gene transfection. A common problem in electroporation is that it has a lower viability than any other transfection method. In this study, we developed a novel electroporation device using a capillary tip and a pipette that was effective on a wide range of mammalian cells, including cell lines, primary cells, and stem cells. The capillary electroporation system considerably reduced cell death during electroporation because of its wire-type electrode, which has a small surface area. The experimental results also indicated that the cell viability was dependent on the change in pH induced by electrolysis during electroporation. Additionally, the use of a long and narrow capillary tube combined with simple pipetting shortened the overall time of the electroporation process by up to 15 min, even under different conditions with 24 samples. These results were supported by comparison with a conventional electroporation system. The transfection rate and the cell viability were enhanced by the use of the capillary system, which had a high transfection rate of more than 80% in general cell lines such as HeLa and COS-7, and more than 50% in hard-to-transfect cells such as stem or primary cells. The viability was approximately 70-80% in all cell types used in this study.  相似文献   

12.
Three types of imaging, namely layer structure, electrochemical reaction, and enzyme sensor response, were achieved by applying surface plasmon resonance (SPR) measurement to an electrochemical biosensor. We constructed glucose oxidase based mediator type sensors on a gold electrode by spotting the mediator that contained horseradish peroxidase and spin coating the glucose oxidase film. The layer structure of the sensor was imaged by means of angle scanning SPR measurement. The single sensor spot (about 1 mm in diameter) consisted of about 100 x 100 pixels and its spatial structure was imaged. The multilayer structure of the enzyme sensor had a complex reflectance-incident angle curve and this required us to choose a suitable incident angle for mapping the redox state. We chose an incident angle that provided the most significant reflection intensity difference by using data obtained from two angle scanning SPR measurements at different electrode potentials. At this incident angle, we controlled the electrochemical states of the spotted mediator in cyclic voltammetry and imaged the degree to which the charged site density changed. Finally, we mapped the enzymatic activity around the mediator spot by the enzymatic reoxidation of pre-reduced mediator in the presence of glucose.  相似文献   

13.
1. The possibility of obtaining sustained and reproducible results in the analysis of dissolved oxygen with simple platinum electrodes by means of the application of a periodic potential pattern was explored over a wide range of frequencies and with a variety of wave forms. 2. Satisfactory results were obtained by the application in the frequency range of 5 to 10 C.P.M. of a square wave consisting of a positive and a negative pulse with interposed shorting periods and observing the current flowing at the end of each successive negative pulse. This was found to be linearly proportional to O(2) concentration for a pulse duration of the order of 1 second when the RC constant of the circuit was sufficiently small. 3. An instrument was developed to provide the required wave form and record the terminal currents of the negative pulses. The instrument provides either for recording of current voltage curves (polarograms) or for continuous recording at a fixed voltage of diffusion limited current values. 4. Typical measurements of oxygen uptake with yeast suspensions illustrate the application of the technique to problems requiring frequent determinations during short intervals. 5. Applications of this technique to biological and other problems are indicated with its limitations.  相似文献   

14.
A rapid method for investigation of the interaction of DNA and electroactive ligands based on an electrochemical equation for irreversible processes is presented. The binding constant (K) and the size of binding site (s) are simultaneously obtained from the dependence of the current on the amount of added DNA in voltammetry. A non-intercalative binder (Hoechst 33258) and two DNA-intercalators (mitoxantrone (MXT) and actinomycin D (AMD)) were examined in experiments. It was found that the binding constant of Hoechst 33258, mitoxantrone and actinomycin D, were 2.1 x 10(8), 8.9 x 10(9) and 9.1 x 10(9) cm(3) mol(-1); and the size of their binding sites were 4, 3 and 8, respectively. The study provides a convenient and sensitive approach for estimating affinity parameters and outlining the interaction between DNA and electroactive targeting compounds.  相似文献   

15.
An enzyme-free amperometric method was established for glucose detection using a nanoporous gold film (NPGF) electrode prepared by a rapid one-step anodic potential step method within 5 min. The prepared NPGF had an extremely high roughness and was characterized by scanning electron microscopy (SEM) and cyclic voltammetry. Electrochemical responses of the as-prepared NPGF to glucose in 0.1M phosphate buffer solution (PBS, pH 7.4) with or without Cl(-) were discussed. In amperometric studies carried out at -0.15 V in the absence of Cl(-), the NPGF electrode exhibited a high sensitivity of 232 μA mM(-1)cm(-2) and gave a linear range from 1mM up to 14 mM with a detection limit of 53.2 μM (with a signal-to-noise ratio of 3). In addition, the oxidation of ascorbic acid (AA) and uric acid (UA) can be completely eliminated at such a low applied potential. On the other hand, the quantification of glucose in 0.1M PBS (pH 7.4) containing 0.1M NaCl offered an extended linear range from 10 μM to 11 mM with a sensitivity of 66.0 μA mM(-1)cm(-2) and a low detection limit of 8.7 μM (signal-to-noise ratio of 3) at a detection potential of 0.2V.  相似文献   

16.
One big challenge of fabricating nanosensors for spatially resolved electrochemical detection of neurochemicals, such as dopamine (DA), is the difficulty to assembly nanometer-scale patternable and integrated sensors. In this work we develop a novel approach to precisely manufacture nano-Au-electrode (NAE) using lithographic fabrication technique, and characterize the NAE for DA detection. A negative photoresist, SU-8, is used as a substrate and protection layer for the 127-nm Au active sensing layer. The cross surface morphology and thickness of the Au layer are imaged by scanning electron microscopy and an interference microscopy. This NAE could be precisely controlled, repeatedly fabricated and conveniently renewed for several times. The electrochemical sensitivity and selectivity of the NAE towards DA detection are significantly higher than those of a standard Au thin-film electrode. This work demonstrates that the NAE could be used as an attractive means for electrochemically sensing and recording DA.  相似文献   

17.
The efficiency of the direct electrochemical regeneration of NADH from NAD+ was enhanced by applying a cholesterol-modified gold amalgam electrode. The modified electrode was prepared by immersing gold plate in mercury and casting few drops of cholesteryl oleate solution over the gold amalgam. Coenzymatically active NADH was formed from NAD+ directly at the cholesterol-modified gold amalgam electrode which is supposed to hinder the dimerization of the NAD radicals on its membrane surface. The direct electrochemical NAD+ reduction process was used favorably to drive an enzymatic reduction of pyruvate to d-lactate. d-Lactate of 18.2 mm was obtained from pyruvate of 25.3 mm at 21 h of total reaction time in the electrolysis of 50 cm3 solution with the electrode of 6 cm2area. The turnover number for NAD+ was estimated as 1400.  相似文献   

18.
Boron-doped diamond thin film (BDD) electrodes have been used to study the oxidation reactions and to detect leucine-enkephalinamide (LEA) and its metabolites, tyrosine (T), tyrosyl-alanine (TA), tyrosyl-alanine-glycine (TAG) and leucine-enkephalin (LE) using cyclic voltammetry (CV), flow-injection analysis (FIA), and gradient liquid chromatography (LC) with amperometric detection. At diamond electrodes, well-defined and highly reproducible cyclic voltammograms were obtained with signal-to-background (S/B) ratios 5-10 times higher than those observed for glassy carbon (GC) electrodes. The analytical peaks of LC for LEA and its metabolites were well resolved. No deactivation of BDD electrodes was found after several experiments with standard as well as plasma samples, indicating high stability of the electrode. Calibration curves were linear over a wide range from 0.06 to 30 microM with regression coefficients of 0.999 for all compounds. The limits of detection obtained based on a signal-to-noise ratio of 3:1 were 3, 2.2, 2.7, 20 and 11 nM for T, TA, TAG, LE and LEA, respectively. These values were at least one order lower than those obtained at GC electrodes, which has given limits of detection of 22.88, 20.64, 89.57, 116.04 and 75.67 for T, TA, TAG, LE and LEA, respectively. Application of this method to real samples was demonstrated and validated using rabbit serum samples. This work shows the promising use of conducting diamond as an amperometric detector in gradient LC, especially for the analysis of enkephalinamide and its metabolites.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号