首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2007,42(3):379-383
In order to prepare a novel adsorbent which can not only degrade organic compound, but also adsorb the heavy metal ions, immobilization of nanometer titanium dioxide on ion-imprinted chitosan carries was investigated. The amount of TiO2, different kinds and amounts of dispersants, adding methods of TiO2, different kinds of cross-linking agents and target metal ions are important factors influencing the degradation of Methyl Orange (MO) and the adsorption for Ni2+. When 15% amount of TiO2 was added in preparation, the removal of MO was highly increased to nearly 90%, which was about eight times higher than that without TiO2, at the same time, the effect of TiO2 on the adsorption capacity was not obvious. The results show that in the presence of Ni2+ and MO, the MO could be removed effectively and the removal of MO reached 95.4%. At the initial concentration of Ni2+ of 200 mg/L, the adsorption capacity of Ni2+ reached 33 mg/g in the presence of MO.  相似文献   

2.
In this study raw starch digesting amylase (RSDA) from Aspergillus carbonarius (Bainier) Thom IMI 366159 was stabilized by covalent binding on polyglutaraldehyde (PG), glutaraldehyde (G) activated chitosan beads or post immobilization cross linking of enzyme adsorbed on chitosan. Presence of Ca2+ ions (0.5–1.5 mM) activated the PG and G derivatives but repressed the crosslinked enzyme. Optimum pH for cross linked derivative increased by 2 units but was unaltered for PG and G derivatives. Immobilized amylase exhibited improved thermal and storage stability. Immobilized derivatives had no loss of activity after 1 month storage and retained above 90% activity after 10 batch reactions of 60 min each. Immobilization successfully stabilized RSDA and immobilized enzyme from A. carbonarius can be applied in numerous industries for cheap, cost effective and environmentally friendly starch hydrolytic processes to simple sugars.  相似文献   

3.
This work describes the preparation of new chelating materials derived from cellulose and sugarcane bagasse for adsorption of Cu2+, Cd2+, and Pb2+ ions from aqueous solutions. The first part involved the mercerization treatment of cellulose and sugarcane bagasse with NaOH 5 mol/L. Non- and mercerized cellulose and sugarcane bagasse were then reacted with ethylenediaminetetraacetic dianhydride (EDTAD) in order to prepare different chelating materials. These materials were characterized by mass percent gain, X-ray diffraction, FTIR, and elemental analysis. The second part consisted of evaluating the adsorption capacity of these modified materials for Cu2+, Cd2+, and Pb2+ ions from aqueous single metal solutions, whose concentration was determined by atomic absorption spectroscopy. These materials showed maximum adsorption capacities for Cu2+, Cd2+, and Pb2+ ions ranging from 38.8 to 92.6 mg/g, 87.7 to 149.0 mg/g, and 192.0 to 333.0 mg/g, respectively. The modified mercerized materials showed larger maximum adsorption capacities than modified non-mercerized materials.  相似文献   

4.
Chitosan/carboxymethyl cashew gum microspheres (CH/CMCG) were prepared with carboxymethyl cashew gum with two different degrees of substitution (DS) and loaded with bovine serum albumin (BSA). In water, for microspheres formed using low molar mass chitosan (LCH) sample swelling was observed for both CMCG samples and CMCG sample with higher DS showed greater swelling. Using high molar mass chitosan (HCH) sample swelling was observed only for microsphere with high DS of CMCG (DS = 0.44). At pH 7.4, the HCH sample led to a lower degree of swelling. The diffusion coefficients Dv were higher for the higher DS of CMCG in both media and the HCH sample had a lower Dv than LCH one. Faster BSA release rates were observed for beads prepared with the higher DS, whereas those prepared with DS = 0.16 took twice the time to reach similar release profiles. All microsphere systems investigated had a non-Fickian BSA release mechanism.  相似文献   

5.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

6.
This study describes the preparation of two new chelating materials derived from succinylated mercerized cellulose (cell 1). Cell 1 was activated through two different methods by using diisopropylcarbodiimide and acetic anhydride (to form an internal anhydride) and reacted with triethylenetetramine in order to obtain cell 2 and 4. New modified celluloses were characterized by mass percent gain, concentration of amine functions, elemental analysis, and infrared spectroscopy. Cell 2 and 4 showed degrees of amination of 2.8 and 2.3 mmol/g and nitrogen content of 6.07% and 4.61%, respectively. The capacity of cell 2 and 4 to adsorb Cu2+, Cd2+, and Pb2+ ions from single aqueous solutions were examined. The effect of contact time, pH, and initial concentration of metal ions on the metal ions uptake was also investigated. Adsorption isotherms were well fitted by the Langmuir model. The maximum adsorption capacity of cell 2 and 4 were found to be 56.8 and 69.4 mg/g for Cu2+; 68.0 and 87.0 mg/g for Cd2+; and 147.1 and 192.3 mg/g for Pb2+, respectively.  相似文献   

7.
This study describes an efficient adsorbent consisting of magnetic Fe3O4 and gellan gum, which couples magnetic separation with ionic exchange for heavy metal removal. Adsorption kinetics analysis showed that the adsorption capacities were in an order of Pb2+ > Cr3+ > Mn2+. Different experimental parameters studies indicated that adsorbent dosage, initial metal concentration, temperature and initial pH played important roles in adsorption process. Additionally, the Freundlich model gave a better fit to the experimental data than the Langmuir model. Chemical analysis of calcium ions released into the bulk solutions demonstrated that carboxyl group is critical for binding Pb2+, Mn2+ and Cr3+. Furthermore, a high desorption efficiency was obtained by sodium citrate.  相似文献   

8.
Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with precise molecular structure, highly geometric symmetry, and a large number of terminal groups, and is suitable to carry biomolecules due to its affinity and biocompatibility. In this study, PAMAM was grafted onto the surface of silica by microwave irradiation. A novel media was developed through immobilizing cellulase onto the prepared PAMAM-grafted silica by adsorption and crosslinking methods and applied in hydrolysis of carboxymethyl cellulose. The results demonstrate that the enzyme binding capacity and enzymolysis efficiency increased with generations of PAMAM. The properties of the immobilized cellulase-PAMAM-grafted silica were investigated, which possessed high enzymatic activity and exhibited better stability with respect to pH, temperature compared with free enzyme. The optimal immobilization conditions for adsorption and crosslinking method were respectively obtained at 5 and 4 mg ml−1 cellulase for 2 h of immobilization. A high enzymolysis efficiency was achieved by employing pH 4.8 and 5.8 substrate solution at 60 °C for adsorbed and crosslinked cellulase, respectively. After repeated three run cycles, the retained activities were found to be 75% and 82%. The results indicate that the PAMAM has a good performance as a carrier, and can be potentially adapted to support other biomacromolecules.  相似文献   

9.
The frustule of diatoms, through appropriate chemical modification, can be developed for a high adsorption level of recombinant proteins and viral nanoparticles. Field emission scanning electron microscopy (FE-SEM) analysis of clean frustules revealed a 3D loculate areolae structure (valvar phase porous pattern of the siliceous cell wall). Isocyanatopropyl triethoxysilane (IPS) and iminodiacetic acid (IDA) were used to immobilize Cu2+ ions (an average Cu2+ adsorption capacity about 190 μmol of Cu2+/ml of the Cu2+-coupled biosilica reached). FE-SEM, energy dispersion X-ray spectroscopy (EDS) and Fourier transform infrared (FT-IR) were used to confirm the chemical modification of the Cu2+-coupled biosilica. Protein adsorption was confirmed with the detection of a recombinant (His)6-tagged green fluorescent protein binding using fluorescent microscopy. Infectious bursal disease virus VP2-441 subviral particles (SVPs) were found to bind to the Cu2+-coupled biosilica (approximately 3 × 10?9 mol of VP2-441 SVPs/ml of modified frustules), a level higher than the previously obtained 9 × 10?10 mol/ml for SVP binding using a commercial Ni–NTA resin. These give diatom frustules the potential to be developed into a material useful in viral nanoparticle purification systems or as a biosensor for the detection of viruses.  相似文献   

10.
A composite membrane from 2-hydroxyethyl methacrylate (HEMA) and poly(hydroxyethyl methacrylate)/chitosan (pHEMA/chitosan) was synthesized via UV initiated photo-polymerization in the presence of an initiator α,α′-azoisobutyronitrile (AIBN). Procion Brown MX 5BR was then covalently immobilized onto composite membrane as a dye–ligand. The binding characteristics of a model protein (i.e. lysozyme) to the dye–ligand immobilized affinity membrane have been investigated from aqueous solution using the plain composite membrane as a control system. The experimental data was analyzed using two adsorption kinetic models, the pseudo-first-order and the pseudo-second-order, to determine the best-fit equation for the adsorption of lysozyme onto affinity composite membrane. The second-order equation for the adsorption of lysozyme on the dye–ligand membrane systems is the most appropriate equation to predict the adsorption capacity for the affinity membrane. The reversible lysozyme adsorption on the affinity membrane obeyed the Freundlich isotherm. The lysozyme adsorption capacity of the plain membrane and the dye–ligand affinity membrane were 8.3 and 121.5 mg ml−1, respectively.  相似文献   

11.
The diversity and metal tolerance of endophytic fungi from six dominant plant species in a Pb–Zn mine wasteland in Yunnan, China were investigated. Four hundred and ninety-five endophytic fungi were isolated from 690 tissue segments. The endophytic fungal colonization extent and isolation extent ranged from 59 % to 75 %, and 0.42–0.93, respectively, and a positive correlation was detected between them. Stems harboured more endophytic fungi than leaves in each plant species, and the average colonization extent of stems was 82 %, being significantly higher than that of leaves (47 %) (P  0.001, chi-square test). The fungi were identified to 20 taxa in which Phoma, Alternaria and Peyronellaea were the dominant genera and the relative frequencies of them were 39.6 %, 19.0 % and 20.4 %, respectively. Metal tolerance test showed that 3.6 mM Pb2+ or 11.5 mM Zn2+ exhibited the greatest toxicity to some isolates and they did not grow on the metal-amended media. In contrast, some isolates were growth stimulated in the presence of tested metals. The isolates of Phoma were more sensitive to Zn2+ than the isolates of Alternaria and Peyronellaea. However, the sensitivity of isolates to Pb2+ was not significantly different among Phoma, Alternaria, Peyronellaea and other taxa (P > 0.05, chi-square test). Our results suggested that fungal endophyte colonization in Pb–Zn polluted plants is moderately abundant and some isolates have a marked adaptation to Pb2+ and Zn2+ metals, which has a potential application in phytoremediation in this area.  相似文献   

12.
High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hydrolytic (0.6–3.5 g COD g?1 VSS d?1) and methanogenic (0.01–0.84 g COD g?1 VSS d?1) activities depended on the type of biomass, whereas no significant differences were observed among the acidogenic activities (1.5–2.2 g COD g?1 VSS d?1). In most cases, the higher the hydrolytic and the methanogenic activity, the higher the Bacteroidetes and Archaea percentages, respectively, in the biomasses. Hydrogenotrophic methanogenic activity was always higher than acetoclastic methanogenic activity, and the highest values were achieved in those biomasses with lower percentages of Methanosaeta. In sum, the combination of molecular tools with activity tests seems to be essential for a better characterization of anaerobic biomasses.  相似文献   

13.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

14.
An immobilized enzyme bioreactor consisting of an agar gel-coated multidisk impeller was developed for the hydrolysis of highly viscous chitosan solutions, and the operating conditions for the production of physiologically active chitosan oligosaccharides (pentamers and hexamers) were investigated. Chitosanase was directly immobilized on the agar gel-coated multidisk impeller by a multipoint attachment method. The high stability of the immobilized enzyme was confirmed by means of five repetitions of a batch hydrolysis reaction. When the enzyme activity at the support surface was relatively high, the yield of the target products was higher at an impeller speed of 2 s−1 than at a speed of 1 s−1. However, no significant increase in yield was observed at impeller speeds higher than 2 s−1 in reactions at either of the two substrate concentrations tested (5 and 20 kg/m3). When the surface enzyme activity was low, the impeller speed did not affect the yield of the target products. The maximum yield of pentamers and hexamers increased as the surface enzyme activity decreased, and high yields (>30%) were obtained at activities below 160 U/m2. From the viewpoint of productivity, the optimal surface-enzyme activity was about 340 U/m2, and at that activity, the yield of target products was 22%. This yield was higher than that reported for conventional acid hydrolysis. To maximize both the productivity and the yield of the target products, the surface area for the immobilized enzyme should be increased. Our results suggest that it may be possible to obtain high yields of pentamers and hexamers of chitosan oligosaccharides from highly viscous chitosan solutions with this reactor.  相似文献   

15.
Poly(hydroxyethyl methacrylate) (PHEMA) nanoparticles with an average size of 300 nm in diameter and with a polydispersity index of 1.156 were produced by surfactant free emulsion polymerization. Specific surface area of the PHEMA nanoparticles was found to be 996 m2/g. Metal-chelating ligand 3-(2-imidazoline-1-yl)propyl(triethoxysilane) (IMEO) was covalently attached to the PHEMA nanoparticles. IMEO content was 0.97 mmol IEMO/g. The morphology and properties of these nanoparticles were characterized with scanning electron microscopy, Fourier transform infrared spectroscopy and atomic force microscopy. The Cu2+-chelated PHEMA–IMEO nanoparticles were used in the adsorption-elution studies of human serum albumin (HSA) in a batch system. Maximum HSA adsorption amount of the Cu2+ chelated nanoparticles was 680 mg HSA/g. The PHEMA–IMEO–Cu2+ nanoparticles exhibited a quite high adsorption capacity and fast adsorption rate due to their high specific surface area and the absence of internal diffusion resistance.  相似文献   

16.
The elm leaf beetle, Xanthogaleruca luteola, is a serious pest of elm trees in urban areas. Partial biochemical characterization of pectinases and cellulases was conducted using the larval digestive system of the pest. Midgut extracts from larvae showed optimum activity for pectinase and cellulase against pectin and carboxymethyl cellulose, respectively, under acidic conditions (pH 6). Pectinases and cellulases were respectively more stable under acidic conditions (pH 4–7) and slightly acidic conditions (pH 5–7) than under highly acidic and alkaline conditions. However, the enzymes were more stable in slightly acidic conditions (pH 6) when incubation time was increased. Maximum activity for the pectinases and cellulases incubated at different temperatures was observed at 45 and 50 °C, respectively. Mg2+ remarkably increased pectinase activity, and cellulase activity increased significantly in the presence of Ca2+ and Mg2+. Sodium dodecyl sulfate significantly decreased pectinase and cellulase activity. The Michaelis–Menten constant (KM) and the maximal reaction velocity (Vmax) values for pectinase were 2 mg·mL? 1 and 0.017 mmol·min? 1·mg? 1 protein toward pectin, respectively. Zymogram analyses revealed the presence of one and five bands of pectinase and cellulase activity, respectively, in the larval midgut extract.  相似文献   

17.
Monosize and non-porous poly(2-hydroxyethylmethacrylate-co-methylmethacrylate) (poly(HEMA-co-MMA)), microspheres were prepared by dispersion polymerisation of HEMA and MMA in an ethanol–water medium in the presence of an initiator (α,α′-azobisisobutyronitrile, AIBN). An affinity dye, i.e. Congo Red (CR) was attached covalently and then Fe3+ ions were incorporated. The poly(HEMA-co-MMA)-CR attached and poly(HEMA-co-MMA)-CR-Fe3+ incorporated microspheres were used in the immobilisation of glucose oxidase (GOD) via adsorption. The adsorption capacities of these microspheres were determined by varying the concentration of GOD in the adsorption medium. GOD adsorption capacities of the Fe3+ incorporated microspheres (165 mg g−1) was greater than that of the dye-attached microspheres (126 mg g−1). The non-specific adsorption of the GOD on the poly(HEMA-co-MMA) microspheres was negligible. The Km values for both immobilised poly(HEMA-co-MMA)-CR-GOD (7.2) and poly(HEMA-co-MMA)-CR-Fe3+-GOD (6.8) were higher than that of the free enzyme (6.6 mM). Optimum reaction pH was 5.0 for free and 7.0 for both immobilised preparations. Optimum reaction temperature of the adsorbed enzymes was 10 °C higher than that of the free enzyme and was significantly broader. After 10 successive uses the retained activity of the adsorbed enzyme was 93%. It was observed that enzyme could be repeatedly adsorbed and desorbed on the CR attached poly(HEMA-co-MMA) microspheres without significant loss in adsorption capacity or enzyme activity.  相似文献   

18.
This research highlights the possibility of employing a fermentation industry waste (Corynebacterium glutamicum) for the removal of nickel(II) ions from aqueous solution. Furthermore, it necessitates the importance of detailed examinations on the possible differences in the biosorption performance, even for the same biomass, but from different origins. Two types of C. glutamicum, obtained from different industrial sources, were used in this study. With respect to nickel speciation and biosorption performance, pH 6 was identified as an optimal condition. Of the two types of C. glutamicum used, the biomass with excess negatively charged groups performed well in the binding of Ni2+ ions. To enhance the feasibility of using the biomass in column mode, as well as its reuse for multiple cycles, C. glutamicum was immobilized in a polysulfone matrix. Both the free and immobilized biomasses performed relatively well, with maximum experimental uptakes of 111.4 and 102.4 mg g−1, respectively. An up-flow packed column loaded with immobilized biomass was employed for the removal of Ni2+ ions. The column performed well in the biosorption of nickel(II), and exhibited a delayed and favorable breakthrough curve, with Ni2+ uptake and percentage removal of 48.1 mg g−1 biomass and 60.4%, respectively.  相似文献   

19.
A modified biomass of baker's yeast was prepared by grafting poly(amic acid), which was obtained via reaction of pyromellitic dianhydride (PMDA) and thiourea, onto the biomass surface at 50 °C for 4 h. This method was simpler than other reported chemical grafting methods. The presence of poly(amic acid) on the biomass surface was verified by FTIR, X-ray photoelectron spectroscopy (XPS) and microscope analyses, and the amount of carboxylate and amide groups in the biomass surface were found to be 1.36 and 0.7 mmol g−1 through potentiometric titration. Compared with the pristine biomass, the adsorption capacity of the modified biomass increased 15- and 11-fold for Cd2+ and Pb2+, respectively. According to the Langmuir equation, the maximum uptake capacities (qm) for lead and cadmium were 210.5 and 95.2 mg g−1, respectively. The kinetics for cadmium and lead adsorption followed the pseudo-second-order kinetics. FTIR and XPS demonstrated that carboxyl, amide, and hydroxyl groups were involved in the adsorption of lead and cadmium, and the adsorption mechanism for the two metal ions included ion exchange, electrostatic interaction and complexation.  相似文献   

20.
Biomass production, dry matter content, specific leaf area and pigment content of Chinese cabbage were all quite similar, when plants were grown in the absence or presence of UV-A + B (2.2 mW cm−2). Elevated Cu2+ concentrations (2–10 μM) in the root environment and UV radiation had negative synergistic effects for Chinese cabbage and resulted in a more rapid and stronger decrease in plant biomass production and pigment content. The quantum yield of photosystem II photochemistry (Fv/Fm) was only decreased at ≥5 μM Cu2+ in the presence of UV radiation, when leaf tissue started to become necrotic. The enhanced Cu toxicity in the presence of UV was largely due to a UV-induced enhanced accumulation of Cu in both roots and shoots. An enhanced Cu content strongly affected the uptake and assimilation of sulfur in plants. The total sulfur content of the root increased at ≥2 μM Cu2+ in presence of UV and at 10 μM Cu2+ in absence of UV and that of the shoot increased at ≥2 μM Cu2+ in presence of UV and at ≥5 μM Cu2+ in absence of UV. In the shoot it could be attributed mainly to an increase in sulfate content. Moreover, there was a strong increase in the water-soluble non-protein thiol content upon Cu2+ exposure in the root and, to a lesser extent in the shoot, both in the presence and absence of UV. The regulation of the uptake of sulfate responded to the occurrence of Cu toxicity directly, since it was more rapidly affected in the presence than in the absence of UV radiation. For instance, the expression and activity of the high affinity sulfate transporter, Sultr1;2, were enhanced at ≥2 μM in the presence of UV, and at ≥5 μM Cu2+ in the absence of UV. In the shoot, the expression of the vacuolar sulfate transporter, Sultr4;1, was upregulated at ≥5 μM Cu2+ in the presence and absence of UV whilst the expression of a second vacuolar sulfate transporter, Sultr4;2, was upregulated at 10 μM Cu2+ in the presence of UV. It is suggested that high Cu tissue levels may interfere/react with the signal compounds involved in the regulation of expression and activity of sulfate transporters. The expression of adenosine 5′-phosphosulfate reductase in the root was hardly affected and was slightly down-regulated at 2 μM in the presence of UV and at 10 μM in the absence of UV. The expression and activity of sulfate transporters were enhanced upon exposure at elevated Cu2+ concentrations; this may not be simply due to a greater sulfur demand at higher Cu levels, but more likely is the consequence of Cu toxicity, since it occurred more rapidly in the presence compared to the absence of UV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号