首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study is to develop an efficient and cost-effective method for α-arbutin production by using whole-cell of Xanthomonas maltophilia BT-112 as a biocatalyst. Hydroquinone (HQ), substrate for the bioconversion as glucosyl acceptor, was immobilized on H107 macroporous resin to reduce its toxic effect on the cells, and the optimal reaction conditions for α-arbutin synthesis were investigated. When 350 g/L H107 resin (254.5 mM HQ) and 20 g/L (4.2 U/g) of cells were shaken in 10 mL Na2HPO4–KH2PO4 buffer (50 mM, pH 6.5) containing 509 mM sucrose at 35 °C with 150 rpm for 48 h, the final yield of α-arbutin reached 65.9 g/L with a conversion yield of 95.2% based on the amount of HQ supplied. The α-arbutin production was 202% higher than that of the control (free HQ) and the cells maintained its full activity for almost six consecutive batch reactions, indicating a potential for reducing production costs. Additionally, the product was one-step isolated and identified as α-arbutin by 13C NMR and 1H NMR analysis. In conclusion, the combination of whole cells and immobilized hydroquinone (IMHQ) is a promising approach for economical and industrial-scale production of α-arbutin.  相似文献   

2.
α-Arbutin is a glycosylated hydroquinone (HQ) which has inhibitory function against tyrosinase. The aim of present study is to develop an efficient and inexpensive method for the production of α-arbutin by using Xanthomonas maltophilia BT-112 as a biocatalyst. HQ, substrate for the bioconversion as glucosyl acceptor, was immobilized on different macroporous resins to reduce its toxic effect on the cells, and the optimal reaction conditions for α-arbutin synthesis were investigated. The research results indicated that H107 resin offered the best adsorption capacity for HQ than other resins. When immobilized hydroquinone (IMHQ) was applied, the maximal HQ tolerance of cells and yield of α-arbutin were 254 mM and 64.7 g L?1 respectively. The α-arbutin productivity (0.90 g L?1 h?1) was 526% higher than that of the control (free HQ) in 72 h reaction and the fermentation broth maintained its full activity for almost three consecutive batch reactions. Additionally, the product was one-step isolated and identified as α-arbutin by 13C NMR and 1H NMR analysis. In conclusion, the results in this work provide a cost-effective method for the production of α-arbutin.  相似文献   

3.
Hydroquinone glycosides were produced by transglycosylation reactions catalyzed by cyclodextrin glucanotransferase (CGTase) from Thermoanaerobacter sp. (Toruzyme® 3.0L). The reactions were carried out in an aqueous system containing hydroquinone (HQ) and maltodextrin as acceptor and donor substrate molecules respectively. The conditions for the synthesis of hydroquinone glucoside (α-arbutin) were 9 mM hydroquinone, maltodextrin (5%, w/v) in 20 mM citrate phosphate buffer, pH 5.5 and 0.025 mg/ml toruzyme at 40 °C for 24 h. The transfer efficiency of hydroquinone glycosylation was 31.8% and 29.2% respectively, when α-cyclodextrin and maltodextrin were employed as donor substrates. The major glycoside product was identified as hydroquinone-1-O-α-d-glucopyranoside (α-arbutin) on the basis of mass spectrometric, nuclear magnetic resonance analysis and component analysis of its enzymatic hydrolysates. The highest molar yield of α-arbutin (21.2%) was obtained when α-cyclodextrin was used as the donor substrate. A two step enzymatic reaction system comprising of CGTase and amyloglucosidase helped to attain a molar yield of 30% for α-arbutin. At room temperature the solubility of α-arbutin in water was determined to be 12.8 g/100 ml which is approximately 1.8 fold higher than that of hydroquinone.  相似文献   

4.
Antioxidant activity in α- and β-chitosan at a wide range of molecular weight (Mw) and chitosan concentration (CS) was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, reducing ability, chelating ability, and hydroxyl radical scavenging activity. The form of chitosan (FC) had significant (P <0.05) effect on all measurements except DPPH radical scavenging activity, and antioxidant activity was dependent on Mw and CS. High Mw (280–300 kDa) of β-chitosan had extremely lower half maximal effective concentrations (EC50) than α-chitosan in DPPH radical scavenging activity and reducing ability. The 22–30 kDa of α- and β-chitosan showed significantly (P <0.05) higher activities in DPPH radical scavenging, reducing ability, and hydroxyl radical scavenging than samples at other Mw, while chelating ability was the highest in 4–5 kDa chitosan. CS had significant effect on all measurements and the effect was related to Mw. The antioxidant activity of 280–300 kDa chitosan was affected by coil-overlap concentrations (C1) in the CS range of 4–10 mg/mL, forming entanglements. Reducing ability and hydroxyl radical scavenging activity were more predominant action in antioxidant activity of chitosan as shown by the lower EC50 values than those in other antioxidant measurements.  相似文献   

5.
Novel ampelopsin glucosides (AMPLS-Gs) were enzymatically synthesized and purified using a Sephadex LH-20 column. Each structure of the purified AMPLS-Gs was determined by nuclear magnetic resonance, and the ionic product of AMPLS-G1 was observed at m/z 505 (C21H22O13·Na)+ using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. AMPLS-G1 was identified as ampelopsin-4′-O-α-d-glucopyranoside. The optimum condition for AMPLS-G1, determined using response surface methodology, was 70 mM ampelopsin, 150 mM sucrose, and 1 U/mL dextransucrase, which resulted in an AMPLS-G1 yield of 34 g/L. The purified AMPLS-G1 displayed 89-fold increased water solubility and 14.5-fold browning resistance compared to those of AMPLS and competitive inhibition against tyrosinase with a Ki value of 40.16 μM. This value was smaller than that of AMPLS (Ki = 62.56 μM) and much smaller than that of β-arbutin (Ki = 514.84 μM), a commercial active ingredient of whitening cosmetics. These results indicate the potential of AMPLS and AMPLS-G1 as superior ingredients for functional cosmetics.  相似文献   

6.
Hydroquinone (HQ) functions as a skin-whitening agent, but it has the potential to cause dermatitis. We synthesized a HQ fructoside (HQ-Fru) as a potential skin-whitening agent by reacting levansucrase from Leuconostoc mesenteroides with HQ as an acceptor and sucrose as a fructofuranose donor. The product was purified using 1-butanol partition and silica-gel column chromatography. The structure of the purified HQ-Fru was determined by 1H and 13C nuclear magnetic resonance, and the molecular ion of the product was observed at m/z 295 (C12 H16 O7 Na)+. The HQ-Fru was identified as 4-hydroxyphenyl-β-d-fructofuranoside. The optimum condition for HQ-Fru synthesis was determined using a response surface method (RSM), and the final optimum condition was 350 mM HQ, 115 mM sucrose, and 0.70 U/ml levansucrase, and the final HQ-Fru produced was 1.09 g/l. HQ-Fru showed anti-oxidation activities and inhibition against tyrosinase. The median inhibition concentration (IC50) of 1,1-diphenyl-2-picrylhydrazyl scavenging activity was 5.83 mM, showing higher antioxidant activity compared to β-arbutin (IC50 = 6.04 mM). The K i value of HQ-Fru (1.53 mM) against tyrosinase was smaller than that of β-arbutin (K i  = 2.8 mM), indicating that it was 1.8-times better as an inhibitor. The inhibition of lipid peroxidation by HQ-Fru was 105.3% that of HQ (100%) and 118.9 times higher than that of β-arbutin (0.89% of HQ).  相似文献   

7.
A series of 4,5-diaryl-1H-imidazole-2(3H)-thione was synthesized and their inhibitory potency against soybean 15-lipoxygenase and free radical scavenging activities were determined. Compound 11 showed the best IC50 for 15-LOX inhibition (IC50 = 4.7 μM) and free radical scavenging activity (IC50 = 14 μM). Methylation of SH at C2 position of imidazole has dramatically decreased the 15-LOX inhibition and radical scavenging activity as it can be observed in the inactive compound 14 (IC50 >250 μM). Structure activity similarity (SAS) showed that the most important chemical modification in this series was methylation of SH group and Docking studies revealed a proper orientation for SH group towards Fe core of the 15-LOX active site. Therefore it was concluded that iron chelating could be a possible mechanism for enzyme inhibition in this series of compounds.  相似文献   

8.
A series of symmetric and asymmetric spermine (SPM) conjugates with all-trans-retinoic acid (ATRA), acitretin (ACI), (E)-3-(trioxsalen-4′-yl)acrylic acid (TRAA) and l-DOPA, amides of ACI, l-DOPA and TRAA with 1-aminobutane, benzylamine, dopamine and 1,12-diaminobutane as well as hybrid conjugates of O,O′-dimethylcaffeic acid (DMCA) with TRAA or N-fumaroyl-indole-3-carboxanilide (FICA) and 2-(2-aminoethoxy)ethanol were synthesized and their antioxidant properties were studied. The reducing activity (RA)% of the compounds were evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging assay and found to be in the range 0–92(20 min)%/96(60 min)% at 100 μM, the most powerful being the conjugates l-DOPA-SPM-l-DOPA (8, RA = 89%/96%) and l-DOPA-dopamine (13, RA = 92%/92%). Conjugate DMCA-NH(CH2CH2O)2-FICA (14) was the most powerful LOX inhibitor with IC50 33.5 μM, followed by the conjugates ACI-NHCH2Ph (10, IC50 40.5 μM), ACI-SPM-TRAA (7, IC50 41.5 μM), DMCA-NH(CH2CH2O)2-TRAA (15, IC50 65 μM), 13 (IC50 81.5 μM) and ACI-dopamine (11, IC50 87 μM). The most potent inhibitors of lipid peroxidation at 100 μM were the conjugates 15 (98%) and ACI-SPM-ACI (4, 97%) whereas all other compounds showed activities comparable or lower than trolox. The most interesting compounds, namely ATRA-SPM-ATRA (3), 4, 10, 11 and 15, as well as unconjugated compounds such as ATRA and dopamine, were studied for their anti-inflammatory activity in vivo on rat paw oedema induced by Carrageenan and found to exhibit, for doses of 0.01 mmol/mL of conjugates per Kg of rat body weight, weaker anti-inflammatory activities (3.6–40%) than indomethacin (47%) with conjugate 3 being the most potent (40%) in this series of compounds. The cytocompatibility of selected compounds was evaluated by the viability of RAMEC cells in the presence of different concentrations (0.5–50 μM) of the compounds. Conjugates 3 (IC50 2.6 μM) and 4 (IC50 4.7 μM) were more cytotoxic than the corresponding unconjugated retinoids ATRA (IC50 18.3 μM) and ACI (IC50 14.6 μM), whereas conjugate 15 (IC50 12.9 μM) was less cytotoxic than either DCSP (IC50 11.3 μM) or the tert-butyl ester of TRAA (IC50 2.9 μM).  相似文献   

9.
Aminochloroquinoline–kojic acid hybrids were synthesized and evaluated for β-haematin inhibition and antiplasmodial activity against drug resistant (K1) and sensitive (3D7) strains of Plasmodium falciparum. Compound 7j was the most potent compound in both strains (IC503D7 = 0.004 μM; IC50K1 = 0.03 μM) and had the best β-haematin inhibition activity (0.07 IC50 equiv vs 1.91 IC50 equiv for chloroquine). One compound 8c was found to be equipotent in both strains (IC50 = 0.04 μM).  相似文献   

10.
Phytochemical investigations on the CHCl3-soluble fraction of the whole plant of Duranta repens Linn. led to the isolation of four new coumarinolignoids, Repenins A–D (14), along with the known coumarinolignoids, cleomiscosin A (5) and durantin A (6). Their structures were determined by modern spectroscopic analysis including 1D and 2D NMR techniques and chemical studies. The compounds (16) showed potent antioxidative scavenging activity against DPPH radicals, with IC50 values in the range 0.420–0.625 mM. Repenin B (2) displayed the strongest scavenging potential with IC50 values of (0.420 mM).  相似文献   

11.
8-Hydroxyquinoline (8HQ) compounds have been reported to possess diverse bioactivities. In recent years, drug repositioning has gained considerable attention in drug discovery and development. Herein, 8HQ (1) and its derivatives (2–9) bearing various substituents (amino, nitro, cyano and halogen) were investigated for their antimicrobial against 27 microorganisms (agar dilution method) and antioxidant (DPPH method) activities. The parent 8HQ (1) exerted a highly potent antimicrobial activity against Gram-positive bacteria including diploid fungi and yeast with MIC values in the range of 3.44–13.78 μM. Moreover, the halogenated 8HQ, especially 7-bromo-8HQ (4) and clioquinol (6), displayed a high antigrowth activity against Gram-negative bacteria compared with the parent compound (1). Apparently, the derivatives with a relatively high safely index, e.g., nitroxoline (2), exhibited strong antibacterial activity against Aeromonas hydrophila (MIC=5.26 μM) and selectively inhibited the growth of P. aeruginosa with the MIC value of 84.14 μM; cloxyquin (3) showed a strong activity against Listseria monocytogenes and Plesiomonas shigelloides with MIC values of 5.57 and 11.14 μM, respectively. Most compounds displayed an antioxidant activity. Specifically, 5-amino-8HQ (8) was shown to be the most potent antioxidant (IC50=8.70 μM) compared with the positive control (α-tocopherol) with IC50 of 13.47 μM. The findings reveal that 8HQ derivatives are potential candidates to be further developed as antimicrobial and antioxidant agents.  相似文献   

12.
Nine rotenoids were isolated from the hexane and dichloromethane extracts of Derris trifoliata stems and were tested for nitric oxide (NO) inhibitory activity using RAW264.7 cells. The result indicated that 12a-hydroxyrotenone (7) possessed very potent NO inhibitory activity with an IC50 value of 0.002 μM, followed by 1 (deguelin, IC50=0.008 μM), 9 (12a-hydroxyelliptone, IC50=0.010 μM) and 2 (α-toxicarol, IC50=0.013 μM), respectively. In addition, the DPPH scavenging activity of rotenoids was also investigated. It was found that 6a,12a-dehydrodeguelin (5) possessed the highest activity against DPPH with an IC50 value of 7.4 μM, followed by deguelin (1, IC50=27.4 μM). All compounds did not show any cytotoxicity at their IC50 values for NO inhibitory activity.Structure–activity relationships (SARs) of these rotenoids against NO release are as follows: (1) hydroxylation at C12a dramatically increased activity, (2) prenylation at furan ring increased activity markedly and (3) hydrogenation of a double bond at C6a–C12a conferred higher activity. For the DPPH radical scavenging effect, it was found that (1) introduction of a double bond at C6a–C12a increased activity and (2) hydroxylation of C11 at the D-ring decreased activity. As regards active compounds of Derris trifoliata stems, the isolated compounds are responsible for the NO inhibitory effect, especially 7, 1, 9 and 2, whereas 5 and 1 are those for the DPPH scavenging activity.  相似文献   

13.
Wang S  Su P  Yang Y 《Analytical biochemistry》2012,427(2):139-143
An online immobilized glucose oxidase (GOx) capillary microreactor was developed based on an enzymatic redox reaction with 1,4-benzoquinone as an acceptor of electrons, replacing the molecular oxygen typically used in a GOx reaction to achieve direct ultraviolet detection without derivation. A high efficiency of enzymolysis was obtained at 1 mg ml?1 1,4-benzoquinone for 5 min of incubation at 25 °C, and baseline separation of the substrate and product could be achieved with a resolution of 3.85 by employing 20 mM phosphate buffer (pH 8.0) containing 40 mg ml?1 sulfated β-cyclodextrin as an additive, a constant voltage of 15 kV, and a detection wavelength of 220 nm. In addition, an online enzyme inhibition study was performed on the immobilized GOx microreactor with metal ions Ag+ and Cu2+ used as model inhibitors. The results indicate that Ag+ (IC50 = 69.16 μM) has a markedly higher inhibitory effect than Cu2+ (IC50 = 1.33 mM). The protocol described can be applied in high-throughput screening of enzyme reactions and inhibitors.  相似文献   

14.
The synthesis of novel indolopyrazoline derivatives (P1-P4 and Q1-Q4) has been characterized and evaluated as potential anti-Alzheimer agents through in vitro Acetylcholinesterase (AChE) inhibition and radical scavenging activity (antioxidant) studies. Specifically, Q3 shows AChE inhibition (IC50: 0.68 ± 0.13 μM) with strong DPPH and ABTS radical scavenging activity (IC50: 13.77 ± 0.25 μM and IC50: 12.59 ± 0.21 μM), respectively. While P3 exhibited as the second most potent compound with AChE inhibition (IC50: 0.74 ± 0.09 μM) and with DPPH and ABTS radical scavenging activity (IC50: 13.52 ± 0.62 μM and IC50: 13.13 ± 0.85 μM), respectively. Finally, molecular docking studies provided prospective evidence to identify key interactions between the active inhibitors and the AChE that furthermore led us to the identification of plausible binding mode of novel indolopyrazoline derivatives. Additionally, in-silico ADME prediction using QikProp shows that these derivatives fulfilled all the properties of CNS acting drugs. This study confirms the first time reporting of indolopyrazoline derivatives as potential anti-Alzheimer agents.  相似文献   

15.
(±)-Licarin A (1) was obtained by oxidative coupling, and its enantiomers, (?)-licarin A (2) and (+)-licarin A (3), were resolved by chiral HPLC. Schistosomicidal and trypanocidal activities of these compounds were evaluated in vitro against Schistosoma mansoni adult worms and trypomastigote forms of Trypanosoma cruzi. The racemic mixture (1) displayed significant schistosomicidal activity with an LC50 value of 53.57 μM and moderate trypanocidal activity with an IC50 value of 127.17 μM. On the other hand, the (?)-enantiomer (2), displaying a LC50 value of 91.71 μM, was more active against S. mansoni than the (+)-enantiomer (3), which did not show activity. For the trypanocidal assay, enantiomer 2 showed more significant activity (IC50 of 23.46 μM) than enantiomer 3, which showed an IC50 value of 87.73 μM. Therefore, these results suggest that (±)-licarin A (1) and (?)-licarin A (2) are promising compounds that could be used for the development of schistosomicidal and trypanocidal agents.  相似文献   

16.
《Phytochemistry letters》2008,1(3):139-143
Six known compounds, atranorin (1) and its derivatives methyl β-orcinol carboxylate (2) and methyl haematommate (3), the depsidones α-alectoronic acid (4) and α-collatolic acid (5), with its hydrolysis derivative β-collatolic acid (6), and a new compound, deoxycollatolic acid (7) have been isolated from the lichen Tephromela atra (Huds.) Hafellner (syn. Lecanora atra). The characterization of the new compound 7 was carried out by extensive NMR studies using COSY, HMQC, HMBC in addition to other spectroscopic methods. 1H NMR spectra recorded at low temperature showed β-collatolic acid (6) was corresponding to an equilibrium of conformers.Compounds 5 and 6 showed a better superoxide anion scavenging activity (IC50 = 463 and 122 μM, respectively) than quercetin (IC50 = 754 μM).  相似文献   

17.
Two new phenanthrene alkaloids, beilschglabrines A (1) and B (2) were isolated from the stem bark of Beilschmiedia glabra, together with lupeol, taraxerol, and 24-methylenelanosta-7,9-diene-3β-15α-diol. The structures of the isolated compounds were elucidated by extensive spectroscopic data analysis and comparison with respective literature data. The compounds were tested for DPPH radical scavenging, acetylcholinesterase and lipoxygenase inhibitory activities. Compound 1 displayed considerable activity in the acetylcholinesterase (IC50 50.4 μM), the DPPH radical scavenging (IC50 115.9 μM) and the lipoxygenase (IC50 32.8 μM) assays.  相似文献   

18.
Two new series of biphenyls, analogs of aglycone of natural product fortuneanoside E, were prepared using Suzuki–Miyaura cross-coupling and selective magnesium iodide demethylation/debenzylation, and their mushroom tyrosinase inhibitory activity was evaluated. Most of the 4-hydroxy-3,5-dimethoxyphenyl biphenyl compounds (series II, 20–36) were in general more active than 3,4,5-trimethoxyphenyl biphenyl compounds (series I, 1–19). Structure–activity relationships study showed that monosaccharide substituents, such as glucose, were not necessary and the presence of 4-hydroxy-3,5-dimethoxyphenyl moiety was crucial for inhibitory activity. Among the compounds synthesised, compound 21 (IC50 = 0.02 mM) was found to be the most active one, which exhibited an activity that was 7 times higher than that of fortuneanoside E (IC50 = 0.14 mM) and 10 times higher than that of arbutin (IC50 = 0.21 mM), known as potent tyrosinase inhibitors. The inhibition kinetics analyzed by Lineweaver–Burk plots revealed that compound 21 was a competitive inhibitor (Ki = 0.015 mM).  相似文献   

19.
In the present investigation the acetone extracts of macroalgae Ulva lactuca and Enteromorpha intestinalis were tested for antioxidant, antimicrobial and cytotoxic potential. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic and flavonoid compounds in extracts. As a result of the study, U. lactuca extract was found to have a better free radical scavenging activity (IC50 = 623.58 μg/ml) than E. intestinalis extract (IC50 = 732.12 μg/ml). Moreover, the tested extracts had effective ferric reducing power and superoxide anion radical scavenging. The total content of phenol in extracts of U. lactuca and E. intestinalis was 58.15 and 40.68 μg PE/mg, while concentrations of flavonoids were 39.58 and 21.74 μg RE/mg, respectively. Furthermore, among the tested species, extracts of U. lactuca showed a better antimicrobial activity with minimum inhibitory concentration values ranging from 0.156 to 5 mg/ml, but it was relatively weak in comparison with standard antibiotics. Bacillus mycoides and Bacillus subtilis were the most susceptible to the tested extracts. Contrary to this Aspergillus flavus, Aspergillus fumigatus and Penicillium purpurescens were the most resistant. Finally, cytotoxic activity of tested extracts was evaluated on four human cancer cell lines. Extract of E. intestinalis expressed the stronger cytotoxic activity towards all tested cell lines with IC50 values ranging from 74.73 to 155.39 μg/ml.  相似文献   

20.
β-lapachone (1) has entered phases I and II clinical trials for the treatment of solid tumors and the therapeutic efficacy of β-lapachone is closely related to its metabolic process. In order to contribute to a better understanding of human metabolism of β-lapachone, Cunninghamella elegans ATCC 10028b was used as a microbial model of mammalian metabolism to biotransform β-lapachone and two new glycosylated derivatives were produced. The chemical structures were elucidated as 6-hydroxy-2,2-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyran-5-O-β-d-glucopyranoside (2) and 5-hydroxy-2,2-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyran-6-O-β-d-glucopyranoside (3) by 1H NMR, 13C NMR, HMBC, HMQC, COSY and HRMS analyses. The major derivative (3) displayed a lower activity against breast cancer cell line SKBR-3 (IC50 = 312.5 μM) than β-lapachone (IC50 = 5.6 μM), but did not show cytotoxicity against normal fibroblasts cell line GM07492-A, whereas β-lapachone was highly toxic (IC50 = 7.25 μM). These metabolites were reported here for the first time and are similar to those that occur in phase II of human metabolism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号