首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Process Biochemistry》2004,39(11):1599-1605
Fusarium oxysporum F3 produced N-acetyl-β-d-glucosaminidase when grown on wheat bran and chitin as carbon sources in solid-state fermentation. The initial moisture content and pH of growth medium were 65% and 6.0, respectively, and the enzyme yield 23.6 U g−1 carbon source. Two isozymes of N-acetyl-β-d-glucosaminidase, called N-acetyl-β-d-glucosaminidases I and II, were isolated from the culture filtrate of F. oxysporum F3. The filtrate was subjected to ammonium sulphate fractionation followed by anion exchange, gel filtration, hydrophobic interaction and cation exchange chromatography. The optimum pH of isozymes I and II was 5.0 and 6.0, respectively, whereas maximum activity of both isozymes was obtained at 40 °C. The Km of isozymes I and II was 49.6 and 48.6 μM and the Vmax 1.24 and 0.26 μmol mg−1 min−1, respectively, on p-nitrophenyl N-acetyl-β-d-glucosaminide as substrate. The molecular mass of isozymes I and II was calculated to be 67 kDa by SDS–PAGE.  相似文献   

2.
N-Succinylamino acid racemase (NSAAR) with N-acylamino acid racemase (NAAAR) activity together with a d- or l-aminoacylase allows the total transformation of N-acetylamino acid racemic mixtures into optically pure d- or l-amino acids, respectively. In this work we have cloned and expressed the N-succinylamino acid racemase gene from the thermophilic Bacillus-related species Geobacillus kaustophilus CECT4264 in Escherichia coli BL21 (DE3). G. kaustophilus NSAAR (GkNSAAR) was purified in a one-step procedure by immobilized cobalt affinity chromatography and showed an apparent molecular mass of 43 kDa in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of about 150 kDa, suggesting that the native enzyme is a homotetramer. Optimum reaction conditions for the purified enzyme were 55 °C and pH 8.0, using N-acetyl-d-methionine as substrate. GkNSAAR showed a gradual loss of activity at preincubation temperatures over 60 °C, suggesting that it is thermostable. As activity was greatly enhanced by Co2+, Mn2+ and Ni2+ but inhibited by metal-chelating agents, it is considered a metalloenzyme. The Co2+-dependent activity profile of the enzyme was studied with no detectable inhibition at higher metal ion concentrations. GkNSAAR showed activity towards both aliphatic and aromatic N-acetylamino acids such as N-acetyl-methionine and N-acetyl-phenylalanine, respectively, with kcat/Km values ranging from 1 × 103 to 9 × 103 s?1 M?1. Kinetic parameters were better for N-acetyl-d-amino acids than for N-acetyl-l-specific ones.  相似文献   

3.
Microbial electrolysis cells (MECs) with autotrophic biocathode are a promising technology for removal of pollutants in wastewater. The aim of this study was to investigate the effect of initial acidity of wastewater on performance of sulfate-reducing biocathodes. MECs with biocathodes were operated with initial pH values of catholyte ranged from 3.0 to 7.0. The optimum initial pH value was 6.0 with a maximum sulfate reductive rate and biomass of 57 mg L−1 d−1 and 2.1 ± 0.4 mg g−1, respectively. With initial pH 7.0, the pH value of catholyte increased to 9.8 ± 0.2 after an operation cycle, which resulted in low performance of the biocathode. A considerable sulfate reductive rate of 31 ± 0.85 mg L−1 d−1 was achieved with initial pH 3.0. Desulfovibrio sp. grew dominantly with abundance of 46%–66% in the cathode biofilm with initial pH values from 3.0 to 6.0 and contributed to the sulfate reduction. Clostridium and Parapedobacter also had high abundance in pH 6.0 cathode, indicated that interspecies electron transfer between electrochemical active and sulfate-reducing bacteria could play an important role in sulfate removal. The results suggest that acidity of catholyte is an important factor to be considered to utilize autotrophic biocathode MECs for wastewater treatment.  相似文献   

4.
《Process Biochemistry》2007,42(8):1237-1243
The pectinolytic enzyme obtained from Penicillium viridicatum RFC by solid-state fermentation was purified to homogeneity by pretreatment with kaolin (40 mg mL−1) and ultrafiltration, followed by chromatography on a Sephadex G50 column. The apparent molecular weight of the enzyme was 24 kDa. Maximal activity occurred at pH 6.0 and at 60 °C. The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of highly esterified pectin. The presence of 10 mM Ba2+ increased the enzyme activity by 96% and its thermal stability by 30%, besides increasing its stability at acid pH. The apparent Km with apple pectin as substrate was 1.82 mg mL−1 and the Vmax was 81 μmol min−1 mg−1.  相似文献   

5.
Targeted analyses of clinically relevant metabolites in human biofluids often require extensive sample preparation (e.g., desalting, protein removal and/or preconcentration) prior to quantitation. In this report, a single ultra-centrifugation based sample pretreatment combined with a designed liquid chromatography–tandem mass spectrometry (LC–MS/MS) protocol provides selective quantification of 3,7-dimethylxanthine (theobromine) and 1,3,7-trimethylxanthine (caffeine) in human saliva, plasma and urine samples. The optimized chromatography permitted elution of both analytes within 1.3 min of the applied gradient. Positive-mode electrospray ionization and a triple quadruple MS/MS instrument operated in multiple reaction mode were used for detection. 13C3 isotopically labeled caffeine was included as an internal standard to improve accuracy and precision. Implementing a 20-fold dilution of the isolated low MW biofluid fraction prior to injection effectively minimized the deleterious contributions of all three matrices to quantitation. The assay was linear over a 160-fold concentration range from 2.5 to 400 μmol L?1 for both theobromine (average R2 0.9968) and caffeine (average R2 0.9997) respectively. Analyte peak area variations for 2.5 μmol L?1 caffeine and theobromine in saliva, plasma and urine ranged from 5 and 10% (intra-day, N = 10) to 9 and 13% (inter-day, N = 25) respectively. The intra- and inter-day precision of theobromine and caffeine elution times were 3 and <1% for all biofluids and concentrations tested. Recoveries for caffeine and theobromine ranged from 114 to 118% and 99 to 105% at concentration levels of 10 and 300 μmol L?1. This validated protocol also permitted the relative saliva, plasma and urine distribution of both theobromine and caffeine to be quantified following a cocoa intervention.  相似文献   

6.
N,N-dimethyldodecylamine-N-oxide (C12NO) is a surfactant that may exist either in a neutral or cationic protonated form depending on the pH of aqueous solutions. Using small angle X-ray diffraction (SAXD) we observe the rich structural polymorphism of pH responsive complexes prepared due to DNA interaction with C12NO/dioleoylphosphatidylethanolamine (DOPE) vesicles and discuss it in view of utilizing the surfactant for the gene delivery vector of a pH sensitive system. In neutral solutions, the DNA uptake is low, and a lamellar Lα phase formed by C12NO/DOPE is prevailing in the complexes at 0.2  C12NO/DOPE < 0.6 mol/mol. A maximum of ~ 30% of the total DNA volume in the sample is bound in a condensed lamellar phase LαC at C12NO/DOPE = 1 mol/mol and pH 7.2. In acidic conditions, a condensed inverted hexagonal phase HIIC was observed at C12NO/DOPE = 0.2 mol/mol. Commensurate lattice parameters, aHC  dLC, were detected at 0.3  C12NO/DOPE  0.4 mol/mol and pH = 4.9–6.4 suggesting that LαC and HIIC phases were epitaxially related. While at the same composition but pH ~ 7, the mixture forms a cubic phase (Pn3m) when the complexes were heated to 80 °C and cooled down to 20 °C. Finally, a large portion of the surfactant (C12NO/DOPE > 0.5) stabilizes the LαC phase in C12NO/DOPE/DNA complexes and the distance between DNA strands (dDNA) is modulated by the pH value. Both the composition and pH affect the DNA binding in the complexes reaching up to ~ 95% of the DNA total amount at acidic conditions.  相似文献   

7.
The kinetic folding of β2-microglobulin from the acid-denatured state was investigated by interrupted-unfolding and interrupted-refolding experiments using stopped-flow double-jump techniques. In the interrupted unfolding, we first unfolded the protein by a pH jump from pH 7.5 to pH 2.0, and the kinetic refolding assay was carried out by the reverse pH jump by monitoring tryptophan fluorescence. Similarly, in the interrupted refolding, we first refolded the protein by a pH jump from pH 2.0 to pH 7.5 and used a guanidine hydrochloride (GdnHCl) concentration jump as well as the reverse pH jump as unfolding assays. Based on these experiments, the folding is represented by a parallel-pathway model, in which the molecule with the correct Pro32 cis isomer refolds rapidly with a rate constant of 5–6 s? 1, while the molecule with the Pro32 trans isomer refolds more slowly (pH 7.5 and 25 °C). At the last step of folding, the native-like trans conformer produced on the latter pathway isomerizes very slowly (0.001–0.002 s? 1) into the native cis conformer. In the GdnHCl-induced unfolding assays in the interrupted refolding, the native-like trans conformer unfolded remarkably faster than the native cis conformer, and the direct GdnHCl-induced unfolding was also biphasic, indicating that the native-like trans conformer is populated at a significant level under the native condition. The one-dimensional NMR and the real-time NMR experiments of refolding further indicated that the population of the trans conformer increases up to 7–9% under a more physiological condition (pH 7.5 and 37 °C).  相似文献   

8.
The development of novel antimicrobial drugs represents a cutting edge research topic. In this study, 20 salicylanilide N,N-disubstituted carbamates and thiocarbamates were designed, synthesised and characterised by IR, 1H NMR and 13C NMR. The compounds were evaluated in vitro as potential antimicrobial agents against Mycobacterium tuberculosis and nontuberculous mycobacteria (Mycobacterium avium and Mycobacterium kansasii) as well as against eight bacterial and fungal strains. Additionally, we investigated the inhibitory effect of these compounds on mycobacterial isocitrate lyase and cellular toxicity. The minimum inhibitory concentrations (MICs) against mycobacteria were from 4 μM for thiocarbamates and from 16 μM for carbamates. Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, were inhibited with MICs from 0.49 μM by thiocarbamates, whilst Gram-negative bacteria and most of the fungi did not display any significant susceptibility. All (thio)carbamates mildly inhibited isocitrate lyase (up to 22%) at a concentration of 10 μM. The (thio)carbamoylation of the parent salicylanilides led to considerably decreased cytotoxicity and thus improved the selectivity indices (up to 175). These values indicate that some derivatives are attractive candidates for future research.  相似文献   

9.
《Process Biochemistry》2014,49(9):1503-1510
This work disclosed the broad transglycosylation capability of the levansucrase from Bacillus licheniformis 8-37-0-1 for the first time. The levansucrase was firstly purified from the strain 8-37-0-1 and found to be a monomer of ∼51 kDa with KETQDYKKSY as the N-terminus. Then, the gene encoding the enzyme was cloned and it contained an ORF of 1449 nucleotides, encoding a 482 amino-acid protein with a predicted 29 amino-acid signal peptide. The deduced mature protein without the signal showed the same N-terminus to the purified enzyme. The mature enzyme was subsequently expressed in Escherichia coli. The recombinant enzyme showed similar biochemical properties to the native one. It produced maximal yield of 7.1 mg/mL levan (Mr 9.6 × 106) from 0.8 M sucrose (pH 6.5) at 40 °C for 24 h in vitro. When using sucrose as the donor, the enzyme displayed a wide range of acceptor specificity and was able to transfer fructosyl to a series of sugar acceptors including hexose, pentose, β- or α-disaccharides, along with the difficult branched alcohols that have not been investigated before. Chemical structures of the resultant products were analyzed by MS and NMR spectra.  相似文献   

10.
Blooms of Karenia brevis plague the West Florida Shelf (WFS) region in the Gulf of Mexico (GOM) where they exert harmful effects on aquatic biota and humans. Because productivity on the WFS is N limited, new N inputs into the region are thought to trigger blooms of K. brevis. Here we examine the potential for new N inputs via N2 fixation by Trichodesmium and other diazotrophic plankton to contribute to the N demand of K. brevis. Because of possible methodological biases, we also compared N2 fixation rates by cultured Trichodesmium using the 15N2 bubble addition method and the 15N2 saturated seawater. Both methods yielded identical results in 12 and 24 h incubations; however, there was more variability in rate estimates made using the bubble addition method. Pelagic N2 fixation rates by other planktonic diazotrophs ranged from 0 to 13.6 nmol N L−1 d−1, comparable to or higher than rates observed in oligotrophic gyres. These rates should be considered conservative estimates because they were made using the bubble addition method. Integrating over our study area, we estimate that new inputs of N to the WFS via N2 fixation are on the order of 0.011 Tmol N annually. Further, we measured directly the trophic transfer of recently fixed N2 to co-occurring plankton that included K. brevis and found that up to 47% of N2 fixed was transferred to non-diazotrophic plankton even in short (<6 h) incubations where N2 fixation was likely underestimated.  相似文献   

11.
Amphiphilically modified low molecular weight chitosan (LMWC) with long chain alkyl groups as hydrophobic moieties and carboxymethyl groups as hydrophilic moieties (N-octyl-N,O-carboxymethyl LMWC, OC-LMWC) was synthesized. Self-assembled polymeric micelles of OC-LMWC were prepared in aqueous environment. Critical micelle concentrations (CMC) of OC-LMWCs were varied from 8.7 to 27.7 mg/l. Paclitaxel (PTX) was successfully encapsulated into the hydrophobic cores of the nanoparticles. The drug loading content and entrapment efficiency were higher to 32.17% (w/w) and 80.61%, respectively. Differential scanning calorimetry (DSC), transmission electron microscope (TEM) observation and dynamic light scattering (DLS) measurements were carried out to determination the physicochemical properties of the micelles. MTT assay showed that the in vitro cytotoxic effect of the PTX-loaded micelles was comparable to that of the commercial formulation, but the blank micelles were far less than the Cremophor EL® vehicle. These results suggested that OC-LMWC micelles were promising carriers for hydrophobic anticancer agents.  相似文献   

12.
Multi-arm star amphiphilic block copolymers (SABCs) with approximately 32 arms were synthesized and characterized for drug delivery applications. A hyperbranched polyester, boltorn® H40 (H40), was used as the macroinitiator for the ring-opening polymerization of ?-caprolactone (?-CL). The resulting multi-arm H40-poly(?-caprolactone) (H40-PCL-OH) was further reacted with carboxyl terminated methoxy poly(ethylene glycol) (MPEG-COOH) to form H40-PCL-b-MPEG copolymers. The resulting SABCs were characterized by 1H NMR spectroscopy and gel permeation chromatography (GPC). The critical aggregation concentration (CAC) of H40-PCL-b-MPEG was 3.8 mg/L as determined by fluorescence spectrophotometry. Below the CAC, stable unimolecular micelles were formed with an average diameter of 18 nm as measured by TEM. Above the CAC, unimolecular micelles exhibited agglomeration with an average diameter of 98 nm. The hydrodynamic diameter of these agglomerates was found to be 122 nm, as measured by dynamic light scattering (DLS). The drug loading efficacy of the H40-PCL-b-MPEG micelles was 26 wt%. Drug release study showed an initial burst followed by a sustained release of the entrapped hydrophobic model drug, 5-fluorouracil, over a period of 9–140 h. These results indicate that the H40-PCL-b-MPEG micelles have great potential as hydrophobic drug delivery carriers.  相似文献   

13.
A thermophilic Bacillus sp. strain AN-7, isolated from a soil in India, produced an extracellular pullulanase upon growth on starch–peptone medium. The enzyme was purified to homogeneity by ammonium sulfate precipitation, anion exchange and gel filtration chromatography. The optimum temperature and pH for activity was 90 °C and 6.0. With half-life time longer than one day at 80 °C the enzyme proves to be thermostable in the pH range 4.5–7.0. The pullulanase from Bacillus strain lost activity rapidly when incubated at temperature higher than 105 °C or at pH lower than 4.5. Pullulanase was completely inhibited by the Hg2+ ions. Ca2+, dithiothreitol, and Mn2+ stimulated the pullulanase activity. Kinetic experiments at 80 °C and pH 6.0 gave Vmax and Km values of 154 U mg−1 and 1.3 mg ml−1. The products of pullulan were maltotriose and maltose. This proved that the purified pullulanase (pullulan-6-glucanohydrolase, EC 3.2.1.41) from Bacillus sp. AN-7 is classified under pullulanase type I. To our knowledge, this Bacillus pullulanase is the most highly thermostable type I pullulanase known to date.  相似文献   

14.
A method for the quantitation of midazolam and its metabolites 1-hydroxymidazolam and 4-hydroxymidazolam from human serum capable of monitoring concentrations achieved under therapeutic conditions is presented. The substances were extracted under basic conditions with toluene and the hydroxy metabolites transformed to their tert-butyldimethylsilyl derivatives with N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide. The samples were measured by gas chromatography–mass spectrometry. The limits of detection are 0.2 ng ml−1 for midazolam and 0.1 ng ml−1 for 1-hydroxy- and 4-hydroxymidazolam. The coefficients of variation are 3.9% at 5 ng ml−1 for midazolam, 6.7% at 2 ng ml−1 for 1-hydroxymidazolam and 8.8% (22.2%) at 0.5 (0.2) ng ml−1 for 4-hydroxymidazolam.  相似文献   

15.
《Inorganica chimica acta》2006,359(4):1135-1146
We are reporting the stability constants of the different complexes between phosphonoacetic acid (PAA), phosphonoformic acid (PFA), aminomethylphosphonic acid (AMPA), aminoethylphosphonic acid (AEPA) and methylenediphosphonic acid (MDP) with the aluminum metal ion in aqueous solutions. (In this study the term aluminum is reserved for the 3+ ion.) The affinity of the phosphonic acid derivatives to chelate aluminum has been tested by potentiometric titrations with I = 0.10 M KNO3 at 25 ± 0.1 °C. The proposed aluminum–ligand complex structures have been confirmed by 31P NMR, 13C NMR, and 27Al NMR experiments. Both PAA and PFA formed simple one to one complexes. The respective values for PAA are log β111 = 13.57, log β110 = 10.58, and log β11−1 = 5.84. The respective values for PFA are log β112 = 15.24, log β111 = 13.11, and log β110 = 6.88. In contrast to PAA and PFA, the major species formed with AMPA and AEPA consist of a series of dimeric complexes. The 31P NMR spectra of these complexes indicate that the amine groups do not co-ordinate to aluminum and remain protonated. In addition to these dimeric complexes, a monoprotonated monomer of Al–AMPA also has been detected. The 27Al NMR experiments indicated that the aluminum is hexacoordinated in all the complexes in this study and the hydroxide ion did not remove aluminium from its complexes. Among the ligands studied, PAA and PFA were able to solubilize aluminum at physiological pH. A comparison between the acidities and the chelating properties of the ligands used is presented.  相似文献   

16.
Lichen bioindication can provide economical and spatially extensive monitoring of climate and pollution impacts on ecological communities. We used non-metric multidimensional scaling of lichen community composition and generalized additive models to analyze regional climate and pollution gradients in the northern Rocky Mountains, U.S. Temperature extremes, relative humidity, and N-deposition were strongly related to lichen community composition. Eutrophic species (genera Physcia, Xanthomendoza, and Xanthoria) were associated with high N deposition, low precipitation, and temperature extremes. Estimated N deposition in our study ranged from <0.5 to 4.26 kg N ha−1 year−1 with degradation to lichen communities observed at 4.0 kg N ha−1 year−1, the indicated critical load. The resulting model can track changes in climate and N pollution related to lichen communities over time, identify probable sensitive or impacted habitats, and provide key information for natural resource management and conservation. The approach is broadly applicable to temperate ecosystems worldwide.  相似文献   

17.
d-Aminoacylase catalyzes the conversion of N-acyl-d-amino acids to d-amino acids and fatty acids. The aim of this study was to identify the d-aminoacylase gene from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173 and investigate the biochemical characterization of the enzyme. A previously uncharacterized d-aminoacylase gene (ADdan) from this organism was cloned and sequenced. The open reading frame (ORF) of ADdan was 1467 bp in size encoding a 488-amino acid polypeptide. ADdan, with a high amino acid similarity to N-acyl-d-aspartate amidohydrolase from Alcaligenes A6, showed relatively low sequence similarities to other characterized d-aminoacylases. The recombinant ADdan protein was expressed in Escherichia coli BL21 (DE3) using pET-28a with a T7 promoter. The enzyme was purified in a single chromatographic step using nickel affinity gel column. The molecular mass of the expressed protein, calculated by SDS–PAGE, was about 52 kDa. The purified ADdan showed optimal activity at pH 8.0 and 50 °C, and was stable at pH 6.0–8.0 and up to 45 °C. Its activity was inhibited by Cu2+, Fe2+, Ca2+, Mn2+, Ni2+, Zn2+ and Hg2+, whereas Mg2+ had no significant influence on this recombinant d-aminoacylase. This is the first report on the characterization of d-aminoacylase with activity towards both N-acyl derivatives of neutral d-amino acids and N-acyl-d-aspartate. The characteristics of ADdan could prove to be of interest in industrial production of d-amino acids.  相似文献   

18.
(E,E)-8-Hydroxygermacrene B was prepared by ketone reduction of germacrone, a naturally occurring compound from Curcuma aeruginosa Roxb. with NaBH4 at low temperature (4 °C). This compound showed remarkable in vitro anti-androgenic activity (IC50 0.15 ± 0.022 mM) applicable to male baldness treatments. NMR analysis at −50 °C indicated that there were four conformational isomers of (E,E)-8-hydroxygermacrene B in a ratio of 48:40:8:4. The major conformers were assigned by 1H NMR and 2D-NOESY NMR spectroscopy as having methyl groups at C-10 and C-4 in up–down (UD) orientations (48% predominance) and UU (40%). 1H NMR spectra implied another two minor conformers with these methyls having DU (8%) and DD (4%) orientations.  相似文献   

19.
《Process Biochemistry》2010,45(6):897-903
G-I, a highly selective β-glucosidase, was purified from phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). G-I was a monomer with native molecular weight of 85 kDa and pI value of 4.2. The maximal activity to p-nitrophenyl-β-d-glucopyranoside (pNPG) occurred at pH 6.0 and 45 °C at which the Km against pNPG was 0.18 mM and Vmax was 46.7 μmol nitrophenol/min/mg. G-I was highly stable within pH 4.0–11.0 and below 40 °C. It was inhibited by Co2+, Cu2+ and Zn2+ (50 mM), but showed resistance to sodium dodecyl sulfonate (SDS, 250 mM). G-I was highly active against β-linked disaccharide cellobiose, gentiobiose and sophorose, but exhibited very low activities against other aryl-glycosides, methyl-α-glycosides and disaccharides trehalose and sucrose. Moreover, G-I specifically hydrolyzed β-(1  6)-glucosidic linkage at the C-20 site of ginsenoside Rb1 to produce ginsenoside Rd, without attack on other β-d-glucosidic linkages. The oligopeptide fragments of G-I were sequenced by nanoESI-MS/MS and showed similarity to the sequences from the glycoside hydrolase family 3. G-I is different to G-II (a glycosidase previously purified from the same fungus) in composition and molecular weight. It shows more stable and higher selectivity than G-II.  相似文献   

20.
Nutrient enrichment is a threat to botanical diversity in Europe, and its assessment is part of biodiversity monitoring schemes. In Switzerland, this is done by calculating the average nutrient (N) indicator value of the vegetation based on a country-wide systematic vegetation survey. However, it is questionable whether N values indicate eutrophication and resulting species loss equally well across an entire country, which includes wide topographic gradients and distinct biogeographic regions. Here we analyze vascular plant species lists from 415 grassland plots (10 m2) between 365 and 2770 m a.s.l. throughout Switzerland to investigate how the relationship between N value and species richness differs with altitude and among regions. The N value strongly decreased with altitude (piecewise regression: r2 = 0.77), particularly between 800 and 2000 m a.s.l., where this decrease was related to a decreasing proportion of fertilized grasslands. In the alpine belt, lower N values were associated with a greater frequency of acidic soils and a restricted species pool. Vascular plant species richness was maximal at intermediate altitude (piecewise regression: r2 = 0.33) and intermediate N value (polynomial regression: r2 = 0.46). When analyzed separately by altitudinal belt, the relationship between species richness and N value was negative in the lowlands and montane belt but unimodal in the subalpine belt. In the alpine belt, soil pH (R indicator values) explained most of the variation in species richness. Two indices of between-plot diversity (floristic dissimilarity and the contribution of individual plots to total species richness) were negatively related to N values from the lowlands to the subalpine belt but not in the alpine belt. All relationships differed little among the biogeographic regions of Switzerland, but they might be modified by changes in management and by the expansion of common lowland species into mountain grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号