首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Pathogenic mycobacteria such as Mycobacterium tuberculosis, the causative agent of tuberculosis, are surrounded by a noncovalently bound capsule, whose major carbohydrate constituent is a glycogen-like alpha-glucan. In the present study we compared the structures of the extracellular polysaccharide to that of the ubiquitous intracellular glycogen. The alpha-glucan was isolated from the culture medium of Mycobacterium bovis Bacille Calmette Guérin, the vaccine strain, in which it is released whereas the intracellular glycogen was obtained after the disruption of cells. The two purified polysaccharides were eluted from permeation gel at a similar position but glycogen was less soluble and gave a more opalescent solution in water than alpha-glucan. Combination of gas chromatography-mass spectrometry analysis of partially O-methylated, partially O-acetylated alditols and NMR analysis confirmed that both polysaccharides were composed of -->4-alpha-D-Glcp-1--> core, substituted at some six positions with short chains. Degradation of polysaccharides with pullulanase, followed by mass spectrometry analysis of the resulting products, also showed that the two polysaccharides do not differ in terms of lengths of branching. Interestingly, application of analytical ultracentrifugation and dynamic light scattering to the mycobacterial alpha-glucan and glycogen and their enzymatic degradative products indicated that the alpha-glucan possessed a higher molecular mass and was more compact than the glycogen from the same species, allowing the formulation of working structural models for the two polysaccharides. Consistent with the models, the alpha-glucan was found to be less accessible to pullulanase, a debranching enzyme, than glycogen.  相似文献   

3.
To gain more insight into the nature of the substrate specificity of protein phosphatases, four forms of glycogen synthase D were used as substrates for previously characterized protein phosphatases, IA, IB, and II, from rat liver cytosol. The phosphatase activity was measured as the conversion of glycogen synthase D to synthase I. While glycogen synthase isolated from rat liver as the D-form was activated mainly by phosphatase IA, rabbit skeletal muscle glycogen synthase previously phosphorylated in vitro by cyclic AMP-dependent protein kinase or phosphorylase kinase was activated efficiently by phosphatases IA, IB, and II. Glycogen synthase isolated from rabbit skeletal muscle as the D-form, however, was a poor substrate for all three phosphatases. These results suggest that the phosphorylation state as well as the primary structure of synthase D markedly affects the rate of its activation by individual protein phosphatases. A protein phosphatase released from rat liver particulate glycogen, on the other hand, activated all forms of synthase D used here readily and at about the same rate.  相似文献   

4.
5.
6.
7.
Activation of phosphorylase in intact glycogen particles from skeletal muscle by Ca2+ and MgATP is known as flash activation. By using [gamma-32P]ATP to monitor protein phosphorylation, we have demonstrated that there is, coincident with phosphorylase activation and inactivation, coordinated phosphorylation/dephosphorylation of phosphorylase, glycogen synthase, the beta-subunit of phosphorylase kinase and proteins of Mr = 43,000 and 32,000. Our results show that within the glycogen particle phosphorylase kinase and type-1 protein phosphatase are organized to allow access to a set of protein components. This arrangement may contribute to the reciprocal regulation of their activities.  相似文献   

8.
Rat liver was perfused with collagenase and the non-parenchymal cells were isolated by means of differential centrifugation. Low magnification microscopical examination indicated that in this non-parenchymal cell fraction less than 1 % are parenchymal cells, whereas the observed pyruvate kinase kinetics indicated that 50% of the total amount of pyruvate kinase in this fraction is of parenchymal cell origin. The non-parenchymal cell fraction was further purified by metrizamide density cushion centrifugation followed by centrifugal elutriation. A fraction that consisted of small particles, diameter < 5 μm, was collected. The pyruvate kinase activity in this fraction showed characteristics of absolute L-type kinetics and further examination of these particles, called blebs, indicated that they were of parenchymal cell origin. Determination of enzyme markers with regard to the different subcellular structures indicated that the blebs, as compared with parenchymal cells, contained lower specific activities of enzyme markers for the endoplasmic reticulum, mitochondria and especially peroxisomes. Electron micrographs indicated the complete absence of nuclei. It is suggested that the pure isolated blebs form a unique test material to study the involvement of the nucleus and/or peroxisomes in metabolic processes. The identification of these blebs in the non-parenchymal cell preparations might also explain some discrepancies in the literature about the presence of certain metabolic processes in non-parenchymal cells.  相似文献   

9.
Glycogen synthase kinase was isolated from rat skeletal muscle. This kinase, which is cyclic nucleotide-independent and calcium-independent, was separated from phosphorylase kinase, cyclic AMP-dependent protein kinase and phosvitin kinase by phosphocellulose chromatography. Gel filtration on Sephadex G-100 resolved the glycogen synthase kinase into two fractions with apparent molecular weights of 68 000 (peak I) and 52 000 (peak II). This step also separated glycogen synthase kinase from the catalytic subunit of the cyclic AMP-dependent protein kinase, which had an apparent molecular weight of 39 000. Peak II glycogen synthase kinase activity was not affected by the addition of calcium, EGTA or a number of cyclic nucleotides. In addition to ATP, dATP would serve as the phosphate donor. Other trinucleotides tested were either poor or ineffective substrates. Activity was about 5-fold greater with Mg2+ than with Mn2+. Glycogen stimulated activity about 25%. Modifications of the methods of Soderling et al. ((1970) J. Biol. Chem. 245, 6317--6328) and Nimmo et al. ((1976) Eur. J. Biochem. 68, 21--30) were developed for purification of glycogen synthease (UDPglucose:glycogen 4-alpha D-glucosyltransferase, EC 2.4.1.11) to specific activity of 35 units/mg of protein. Using this preparation of glycogen synthase as substrate, the phosphorylation and inactivation catalyzed by glycogen synthase kinase was compared to that catalyzed by cyclic AMP-dependent protein kinase or phosphorylase kinase. Each of the kinases had different specificities for phosphorylation sites on glycogen synthase.  相似文献   

10.
A model to study glycogen supercompensation (the significant increase in glycogen content above basal level) in primary rat skeletal muscle culture was established. Glycogen was completely depleted in differentiated myotubes by 2 h of electrical stimulation or exposure to hypoxia during incubation in medium devoid of glucose. Thereafter, cells were incubated in medium containing glucose, and glycogen supercompensation was clearly observed in treated myotubes after 72 h. Peak glycogen levels were obtained after 120 h, averaging 2.5 and 4 fold above control values in the stimulated- and hypoxia-treated cells, respectively. Glycogen synthase activity increased and phosphorylase activity decreased continuously during 120 h of recovery in the treated cells. Rates of 2-deoxyglucose uptake were significantly elevated in the treated cells at 96 and 120 h, averaging 1.4–2 fold above control values. Glycogenin content increased slightly in the treated cells after 48 h (1.2 fold vs. control) and then increased considerably, achieving peak values after 120 h (2 fold vs. control). The results demonstrate two phases of glycogen supercompensation: the first phase depends primarily on activation of glycogen synthase and inactivation of phosphorylase; the second phase includes increases in glucose uptake and glycogenin level.  相似文献   

11.
12.
There is a significant unmet need for safe, anabolic muscle therapies to treat diseases and conditions associated with severe muscle weakness and frailty. The identification of such therapies requires appropriate cell-based screening assays to select compounds for further development using animal models. Primary human skeletal muscle cells have recently become available from a number of commercial vendors. Such cells may be valuable for studying the mechanisms that direct muscle differentiation, and for identifying and characterizing novel therapeutic approaches for the treatment of age- and injury-induced muscle disorders. However, only limited characterization of these cells has been reported to date. Therefore, we have examined four primary human muscle cell preparations from three different vendors for their capacity to differentiate into multinucleated myotubes. Two of the preparations demonstrated robust myotube formation and expressed characteristic markers of muscle differentiation. Furthermore, these myotubes could be induced to undergo morphological atrophy- and hypertrophy-like responses, and atrophy could be blocked with an inhibitor of myostatin signaling, a pathway that is known to negatively regulate muscle mass. Finally, the myotubes were efficiently infected with recombinant adenovirus, providing a tool for genetic modification. Taken together, our results indicate that primary human muscle cells can be a useful system for studying muscle differentiation, and may also provide tools for studying new therapeutic molecules for the treatment of muscle disease.  相似文献   

13.
Glycogen synthase stimulated the autophosphorylation and autoactivation of phosphorylase kinase from rabbit skeletal muscle. This stimulation was additive to that by glycogen and the reaction was dependent on Ca2+. The effect by glycogen synthase was maximum within the activity ratio (the activity of enzyme without glucose-6-P divided by the activity with 10 mM glucose-6-P) of 0.3 and over 0.3 it was rather inhibitory. The results suggest that autophosphorylation of phosphorylase kinase in the presence of glycogen synthase on glycogen particles may be an important regulatory mechanism of glycogen metabolism in skeletal muscle.  相似文献   

14.
Skeletal muscle, liver and heart glycogen variations, induced by swimming in thermal water (at 35 degrees C) as a model of physical exercise for clinical use, were studied. Muscle and liver glycogen moderately decreases after a 30-min period of swimming and comes near to depletion after 60 min. Heart glycogen decreases only slightly after 60 min. Blood glucose and plasma insulin decrease only after 60 min of swimming. A 30-min swim in thermal water, cooled to 25 degrees C, depletes muscle and liver glycogen and slightly decreases heart glycogen. Under these conditions, plasma insulin decreases and hypoglycemia occurs. The results seem to indicate some advantages of swimming in hot thermal water in order to prevent glycogen store depletion as the physiological prerequisite for a physical exercise of clinical interest to obtain therapeutical benefits, avoiding premature fatigue and exhaustion.  相似文献   

15.
16.
17.
Crude and purified xanthine dehydrogenase preparations from rat liver were examined for the existence of a naturally occurring inactive form. Reduction of the purified enzyme by xanthine under anaerobic conditions proceeded in two phases. The enzyme was inactivated by cyanide, which caused the release of a sulfur atom from the molybdenum center as thiocyanate. The amount of thiocyanate released was almost in parallel with the initial specific activity. The active and inactive enzymes could be resolved by affinity chromatography on Sepharose 4B/folate gel. These results provided evidence that the purified enzyme preparation from rat liver contained an inactive form. A method for the determination of the active and inactive enzymes in crude enzyme preparations from rat liver was devised based on the fact that only active enzyme could react with [14C]allopurinol and both active and inactive enzymes could be immunoprecipitated quantitatively by excess specific antibody to xanthine dehydrogenase. The amount of [14C]alloxanthine (derived from [14C]allopurinol) bound to the active sulfo enzyme in crude rat liver extracts was about 0.5 mol/mol of FAD. As this content is closely similar to that in the purified enzyme, these results suggest the existence of an inactive desulfo form in vivo.  相似文献   

18.
Activity can be induced in potentially active rabbit skeletal muscle phosphorylase monomers covalently bound to Sepharose by noncovalent interaction with soluble subunits carrying inactive pyridoxal 5'-phosphate analogs or even salicyladlehyde. These analogs are themselves incapable of reconstituting active holophorphorylase from apophosphorylase. Phosphorylases with one intrinsically inactive and one potentially active subunit have about one half of the activity of the native phosphorylase dimer. The usefulness of this technique for subunit complementation was demonstrated by forming hybrid phosphorylases with inactive Sepharose-bound rabbit skeletal muscle subunits containing pyridoxal 5'-phosphate monomethylester and soluble activatable frog muscle and rabbit liver phosphorylase monomers. The inactive Sepharose-bound subunit induced in each case activity in the soluble subunit. But whereas the inactive rabbit muscle phosphorylase subunit even transmitted its characteristic temperature dependence of the rate of the reaction to the frog muscle subunit, it could not propagate its control properties to the liver enzyme. Differences of hybrid phosphorylases are related to immunological and amino acid divergencies among the component enzymes.  相似文献   

19.
Several structural and enzymatic properties of myosin from skeletal muscles of neonatal and adult rabbits were compared. Electrophoretic analyses and proteolysis experiments indicated that differences between the two myosin types could be attributed to their heavy subunits. Circular dichroism measurements of subfragment-1 species, and trypsin-digested derivatives showed that the neonatal protein contained less alpha-helices than the adult form. The Mg2(+)-ATPase activity of neonatal myosin was lower than that of adult myosin, especially in the presence of actin. In comparison with adult subfragment-1, it was found that the binding of ATP analogues such as adenosine 5'-[beta, gamma-imino]triphosphate and PPi, or that of ATP (as deduced from the apparent KmATP) to neonatal subfragment-1 in the presence of actin was enhanced, while that of ADP was decreased. On the other hand, the association of actin with the ADP - neonatal-subfragment-1 complex was weaker. These features must be expressed in the cyclical actin-myosin association/dissociation steps occurring in ATP hydrolysis, and more particularly in the reassociation of actin with the ATP-hydrolysis-products - myosin complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号