首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four methods of ranking horses on reactivity were evaluated and compared: isolation from conspecifics, presentation of a static novel stimulus, traversing a novel stimulus in a runway (isolation, novel stimulus and runway tests, respectively) and assigning subjective emotionality scores. In all tests, horses’ heart rates were recorded and behaviour was videotaped. To be considered a valid test of reactivity, at least one heart rate and one behavioural measurement in the test had to change significantly between treatments (tranquilizer administation versus sham tranquilizer administration), and behavioural measures had to be displayed in at least 75% of the trials. Forty horses performed each of the three tests daily on three different days in a switchback design. Horses were assigned randomly to a daily test sequence, which was maintained throughout the study. In the runway test, no significant difference in heart rate values in tranquilized and non-tranquilized horses was found, and no behavioural attribute was displayed in more than 52% of the trials; therefore it was rejected as a valid test of reactivity. Both isolation and novel stimulus tests produced valid measurements. Mean heart rate was the most precise physiological measure for these tests, and walking and defecation frequency were the most precise behavioural measures for novel stimulus and isolation tests, respectively. Mean heart rates on the novel stimulus and isolation tests were correlated (rs = 0.79, P < 0.01) indicating that these tests produced similar rankings based on physiological responses. However, behavioural measures ranked horses differently (rs = 0.27, P < 0.10) on the tests. Rank correlations between mean heart rates and behavioural measures were higher in the novel stimulus (rs = 0.66, P < 0.01) than the isolation test (rs = 0.55, P < 0.01), indicating that the novel stimulus test ranked horses based on either physiological or behavioural responses more similarly than did the isolation test. Therefore, the novel stimulus test was considered the more accurate evaluation of reactivity. Subjective emotionality scores were correlated moderately with mean heart rates (rs > 0.33, P < 0.01) from the novel stimulus and isolation tests and with walking scores (rs = 0.47, P < 0.01) from the novel stimulus test. Assignment of subjective emotionality scores was not as accurate as the novel stimulus or isolation tests in ranking horses for reactivity. Using physiological data alone, combining physiological and behavioural measurements or using more than one behavioural measurement in reactivity tests may reflect the reactivity of the horse better than a single behavioural measurement.  相似文献   

2.
Apurinic/apyrimidinic (AP) endonucleases are important DNA repair enzymes involved in two overlapping pathways: DNA glycosylase-initiated base excision (BER) and AP endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, AP endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in NIR, the same AP endonucleases incise DNA 5' to a wide variety of oxidized bases. The flowering plant Arabidopsis thaliana contains three genes encoding homologues of major human AP endonuclease 1 (APE1): Arp, Ape1L and Ape2. It has been shown that all three proteins contain AP site cleavage and 3'-repair phosphodiesterase activities; however, it was not known whether the plant AP endonucleases contain the NIR activity. Here, we report that ARP proteins from Arabidopsis and common wheat (Triticum aestivum) contain NIR and 3'  5' exonuclease activities in addition to their AP endonuclease and 3'-repair phosphodiesterase functions. The steady-state kinetic parameters of reactions indicate that Arabidopsis ARP cleaves oligonucleotide duplexes containing α-anomeric 2'-deoxyadenosine (αdA) and 5,6-dihydrouridine (DHU) with efficiencies (kcat/KM = 134 and 7.3 μM−1·min−1, respectively) comparable to those of the human counterpart. However, the ARP-catalyzed 3'-repair phosphodiesterase and 3'  5' exonuclease activities (kcat/KM = 314 and 34 μM−1·min−1, respectively) were about 10-fold less efficient as compared to those of APE1. Interestingly, homozygous A. thaliana arp–/– mutant exhibited high sensitivity to methyl methanesulfonate and tert-butyl hydroperoxide, but not to H2O2, suggesting that ARP is a major plant AP endonuclease that removes abasic sites and specific types of oxidative DNA base damage. Taken together, these data establish the presence of the NIR pathway in plants and suggest its possible role in the repair of DNA damage generated by oxidative stress.  相似文献   

3.
《Phytomedicine》2014,21(14):1801-1807
The plant Anacyclus pyrethrum (AP) consists of several N-alkylamides with pellitorine as main constituent. AP extracts are known to be biologically active and some products for topical administration containing AP plant extracts are already commercially available with functional cosmeceutical claims. However, no transdermal data for pellitorine are currently available. Therefore, our general goal was to investigate the local skin pharmacokinetics of the plant N-alkylamide pellitorine using a Franz diffusion cell set-up. Two different forms were applied on human skin: purified pellitorine and the AP extract. Our study demonstrated that pellitorine is able to cross the stratum corneum and the subsequent skin layers. A significantly higher permeability coefficient was observed when the AP extract (Kp = 2.3 × 10−4 cm/h) was administered, compared to purified pellitorine (Kp = 1.1 × 10−4 cm/h). With the obtained pellitorine concentrations in the skin layers and the receptor fluid, it is concluded that local and systemic effects can be expected after topical application. Due to these findings and as a regulatory consequence, products containing reasonable concentrations of pellitorine are recommended to be classified as a medicinal product.  相似文献   

4.
The purpose of this study was to investigate the effect of active pre-warming combined with three regimens of fluid ingestion: (1) fluid replacement equal to sweat rate (FF), (2) fluid replacement equal to half the sweat rate (HF), and (3) no fluid replacement (NF). Eight males cycled to voluntary fatigue at 70% of peak power output (PPO) in 31.3±0.4°C, 63.3±1.2% relative humidity in a randomised fashion in either of FF, HF or NF conditions. For each trial the time to fatigue test was preceded by 2×20 min active pre-warming periods where subjects also cycled at 70% PPO. Subjects commenced each exercise period with identical rectal temperatures (Tre). The rate of increase in Tre for each condition during the first 20 min of active pre-warming was not different. However, the rate of increase in Tre was significantly reduced in the second active pre-warming period for all fluid conditions but no differences between conditions were noted. During the fatigue test, the rate of increase in Tre for FF was 0.29°C h−1 and 0.58°C h−1 for HF but were not significantly different. The rate of increase in Tre for the NF trial was 0.92°C h−1 and was significantly higher compared to the FF trial. Overall mean skin temperatures and mean body temperatures were higher for NF compared to FF and HF. The rate of heat storage during the fatigue test was similar for FF (80.1±11.7 W m−2) and HF (73.0±13.7 W m−2) conditions but increased to 155.8±31.2 W m−2 (P<0.05) in the NF trial. The results indicate that fluid ingestion equal to sweat rate has no added benefit over fluid ingestion equal to half the sweat rate in determining time to fatigue over 40 min of sub-maximal exercise in warm humid conditions. Fluid restriction accelerates the rate of increase in Tre after 40 min of exercise, thereby reducing the time to fatigue. The data support the model that anticipation of impending thermal limits reduces efferent command to working skeletal muscle ensuring cellular preservation.  相似文献   

5.
We previously reported the phenylchloronitrobenzamides (PCNBs), a novel class of compounds active against the species of trypanosomes that cause Human African Trypanosomiasis (HAT). Herein, we explored the potential to adjust the reactivity of the electrophilic chloronitrobenzamide core. These studies identified compound 7d that potently inhibited the growth of trypanosomes (EC50 = 120 nM for Trypanosoma b. brucei, 18 nM for Trypanosoma b. rhodesiense, and 38 nM for Trypanosoma b. gambiense) without significant cytotoxicity against mammalian cell lines (EC50 > 25 μM for HepG2, HEK293, Raji, and BJ cell lines) and also had good stability in microsomal models (t1/2 > 4 h in both human and mouse). Overall these properties indicate the compound 7d and its analogs are worth further exploration as potential leads for HAT.  相似文献   

6.
Alkaline phosphatase (AP) and ecto-5′-nucleotidase (e5′NT) belong to same family that hydrolyze the extracellular nucleotides and ensure the bioavailability of nucleotides and nucleosides at purinergic receptors. During pathophysiological conditions, the over expression of AP and e5′NT lead to an increased production of adenosine that enhance tumor proliferation, invasiveness, neoangiogenesis and disrupts the body antitumor response. As both enzymes are abundantly expressed in above mentioned conditions, therefore it is of great interest to synthesize and develop potent inhibitors of these enzymes that augment the antitumor therapy. Herein we reported the synthesis and biological activity of a new series of chalcone-sulfonamide hybrids (4a-j). These derivatives were then evaluated for their inhibitory potential against two members of ecto-nucleotidase family, e5′NT (human and rat) and APs isozyme (intestinal and tissue nonspecific). Only six derivatives were found to inhibit both human and rat e5′NT enzymes. Compounds 4e and 4d showed maximum inhibition of human and rat e5′NT with an IC50 ± SEM = 0.26 ± 0.01 and 0.33 ± 0.004 μM, respectively. Moreover, on APs, these derivatives were identified as the selective inhibitors of calf intestinal AP (c-IAP). The derivative 4a exhibited maximum inhibition of c-IAP with an IC50 ± SEM = 0.12 ± 0.02 μM. In conclusion, these chalcone-sulfonamide hybrids exhibited dual inhibition of both family of isozymes but was more selective towards c-IAP enzyme.  相似文献   

7.
Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Pathogenic bacteria Mycobacterium tuberculosis contains two AP endonucleases: MtbXthA and MtbNfo members of the exonuclease III and endonuclease IV families, which are exemplified by Escherichia coli Xth and Nfo, respectively. It has been shown that both MtbXthA and MtbNfo contain AP endonuclease and 3′  5′ exonuclease activities. However, it remains unclear whether these enzymes hold 3′-repair phosphodiesterase and nucleotide incision repair (NIR) activities. Here, we report that both mycobacterial enzymes have 3′-repair phosphodiesterase and 3′-phosphatase, and MtbNfo contains in addition a very weak NIR activity. Interestingly, depending on pH, both enzymes require different concentrations of divalent cations: 0.5 mM MnCl2 at pH 7.6 and 10 mM at pH 6.5. MtbXthA requires a low ionic strength and 37°C, while MtbNfo requires high ionic strength (200 mM KCl) and has a temperature optimum at 60 °C. Point mutation analysis showed that D180 and N182 in MtbXthA and H206 and E129 in MtbNfo are critical for enzymes activities. The steady-state kinetic parameters indicate that MtbXthA removes 3′-blocking sugar-phosphate and 3′-phosphate moieties at DNA strand breaks with an extremely high efficiency (kcat/KM = 440 and 1280  μM-1∙min−1, respectively), while MtbNfo exhibits much lower 3′-repair activities (kcat/KM = 0.26 and 0.65 μM-1∙min−1, respectively). Surprisingly, both MtbXthA and MtbNfo exhibited very weak AP site cleavage activities, with kinetic parameters 100- and 300-fold lower, respectively, as compared with the results reported previously. Expression of MtbXthA and MtbNfo reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2 to various degrees. Taken together, these data establish the DNA substrate specificity of M. tuberculosis AP endonucleases and suggest their possible role in the repair of oxidative DNA damage generated by endogenous and host- imposed factors.  相似文献   

8.
A novel class of 3-hydroxy-2-mercaptocyclohex-2-enone-containing inhibitors of human lactate dehydrogenase (LDH) was identified through a high-throughput screening approach. Biochemical and surface plasmon resonance experiments performed with a screening hit (LDHA IC50 = 1.7 μM) indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of this screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50 = 0.18 μM). Two crystal structures of optimized compounds bound to human LDHA were obtained and explained many of the observed structure–activity relationships. In addition, an optimized inhibitor exhibited good pharmacokinetic properties after oral administration to rats (F = 45%).  相似文献   

9.
The ATP-dependent Mur ligases (MurC, MurD, MurE and MurF) successively add l-Ala, d-Glu, meso-A2pm or l-Lys, and d-Ala-d-Ala to the nucleotide precursor UDP-MurNAc, and they represent promising targets for antibacterial drug discovery. We have used the molecular docking programme eHiTS for the virtual screening of 1990 compounds from the National Cancer Institute ‘Diversity Set’ on MurD and MurF. The 50 top-scoring compounds from screening on each enzyme were selected for experimental biochemical evaluation. Our approach of virtual screening and subsequent in vitro biochemical evaluation of the best ranked compounds has provided four novel MurD inhibitors (best IC50 = 10 μM) and one novel MurF inhibitor (IC50 = 63 μM).  相似文献   

10.
《Phytomedicine》2014,21(8-9):1088-1091
STAT3 signaling pathway is an important target for human cancer therapy. Thus, the identification of small-molecules that target STAT3 signaling will be of great interests in the development of anticancer agents. The aim of this study was to identify novel inhibitors of STAT3 pathway from the roots of Zanthoxylum nitidum (Roxb.) DC. The bioassay-guided fractionation of MeOH extract of Z. nitidum using a STAT3-responsive gene reporter assay led to the isolation of angoline (1) as a potent and selective inhibitor of the STAT3 signaling pathway (IC50 = 11.56 μM). Angoline inhibited STAT3 phosphorylation and its target gene expression and consequently induced growth inhibition of human cancer cells with constitutively activated STAT3 (IC50 = 3.14–4.72 μM). This work provided a novel lead for the development of anti-cancer agents targeting the STAT3 signaling pathway.  相似文献   

11.
Previous studies have shown that compound 1 displayed high affinity towards histamine H3 receptor (H3R), (human (h-H3R), Ki = 8.6 nM, rhesus monkey (rh-H3R), Ki = 1.2 nM, and rat (r-H3R), Ki = 16.5 nM), but exhibited high affinity for hERG channel. Herein, we report the discovery of a novel, potent, and highly selective H3R antagonist/inverse agonist 5a(SS) (SAR110068) with acceptable hERG channel selectivity and desirable pharmacological and pharmacokinetic properties through lead optimization sequence. The significant awakening effects of 5a(SS) on sleep–wake cycles studied by using EEG recording in rats during their light phase support its potential therapeutic utility in human sleep–wake disorders.  相似文献   

12.
A novel series of 2-amino-1,3,5-triazines bearing a tricyclic moiety as heat shock protein 90 (Hsp90) inhibitors is described. Molecular design was performed using X-ray cocrystal structures of the lead compound CH5015765 and natural Hsp90 inhibitor geldanamycin with Hsp90. We optimized affinity to Hsp90, in vitro cell growth inhibitory activity, water solubility, and liver microsomal stability of inhibitors and identified CH5138303. This compound showed high binding affinity for N-terminal Hsp90α (Kd = 0.52 nM) and strong in vitro cell growth inhibition against human cancer cell lines (HCT116 IC50 = 0.098 μM, NCI-N87 IC50 = 0.066 μM) and also displayed high oral bioavailability in mice (F = 44.0%) and potent antitumor efficacy in a human NCI-N87 gastric cancer xenograft model (tumor growth inhibition = 136%).  相似文献   

13.
Three new acridine–thiazolidinone derivatives (2a2c) have been synthesized and their interactions with calf thymus DNA and a number of cell lines (leukemic cells HL-60 and L1210 and human epithelial ovarian cancer cell lines A2780) were studied. The compounds 2a2c possessed high affinity to calf thymus DNA and their binding constants determined by spectrofluorimetry were in the range of 1.37 × 106–5.89 × 106 M?1. All of the tested derivatives displayed strong cytotoxic activity in vitro, the highest activity in cytotoxic tests was found for 2c with IC50 = 1.3 ± 0.2 μM (HL-60), 3.1 ± 0.4 μM (L1210), and 7.7 ± 0.5 μM (A2780) after 72 h incubation. The cancer cells accumulated acridine derivatives very fast and the changes of the glutathione level were confirmed. The compounds inhibited proliferation of the cells and induced an arrest of the cell cycle and cell death. Their influence upon cells was associated with their reactivity towards thiols and DNA binding activity.  相似文献   

14.
Biological screening of a library of synthesized benzo[c]chromene-7,10-dione natural products against human farnesyltransferase (FTase) has identified tecomaquinone I (IC50 of 0.065 ± 0.004 μM) as being one of the more potent natural product inhibitors identified to date. Anti-plasmodial screening of the same library against a drug-resistant strain of Plasmodium falciparum identified the structurally-related dichromenol tectol as a moderately active growth inhibitor with an IC50 3.44 ± 0.20 μM. Two novel series of analogues, based on the benzo[c]chromene-7,10-dione scaffold, were subsequently synthesized, with one analogue exhibiting farnesyltransferase inhibitory activity in the low micromolar range. A preliminary structure–activity relationship (SAR) study has identified different structural requirements for anti-malarial activity in comparison to FTase activities for these classes of natural products. Our results identify tecomaquinone I as a novel scaffold from which more potent inhibitors of human and parasitic FTase could be developed.  相似文献   

15.
The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC50 = 6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC50 = 7.25 μM) < pentoxifylline (hAChE IC50 = 6.60 μM) ? propentofylline (hAChE IC50 = 6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC50 = 0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC50 > 50 μM) relative to the reference agent donepezil (hBuChE IC50 = 13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.  相似文献   

16.
Selective inhibition of pro-inflammatory prostaglandin (PG)E2 formation via microsomal PGE2 synthase-1 (mPGES-1) might be superior over inhibition of all cyclooxygenase (COX)-derived products by non-steroidal anti-inflammatory drugs (NSAIDs) and coxibs. We recently showed that benzo[g]indol-3-carboxylates potently suppress leukotriene biosynthesis by inhibiting 5-lipoxygenase. Here, we describe the discovery of benzo[g]indol-3-carboxylates as a novel class of potent mPGES-1 inhibitors (IC50 ? 0.1 μM). Ethyl 2-(3-chlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (compound 7a) inhibits human mPGES-1 in a cell-free assay (IC50 = 0.6 μM) as well as in intact A549 cells (IC50 = 2 μM), and suppressed PGE2 pleural levels in rat carrageenan-induced pleurisy. Inhibition of cellular COX-1/2 activity was significantly less pronounced. Compound 7a significantly reduced inflammatory reactions in the carrageenan-induced mouse paw edema and rat pleurisy. Together, based on the select and potent inhibition of mPGES-1 and 5-lipoxygenase, benzo[g]indol-3-carboxylates possess potential as novel anti-inflammatory drugs with a valuable pharmacological profile.  相似文献   

17.
Synthesis and biological activities of a series of homo- or substituted piperidine unsymmetrical diethers are described. The novel compounds were evaluated for histamine H3 receptor binding affinities at recombinant human H3 receptor stably expressed in HEK-293 cells. All diethers showed in vitro affinities in nanomolar concentration range. The most potent compounds are 1-[3-(3-(4-chlorophenoxy)propoxy)propyl]-3-methylpiperidine 11 (Ki = 3.2 nM) and 1-[3-(3-(4-chlorophenoxy)propoxy)propyl]azepane 13 (Ki = 3.5 nM).  相似文献   

18.
A combinatorial series of novel quinazolin-4(3H)-ones were synthesised and their structures were established based on spectroscopic data (IR, NMR, EI-MS, and FAB-MS). The compounds were tested for inhibition of the zinc metalloproteinase thermolysin (TLN) utilizing a chemical array-based approach. Some of the compounds were found to inhibit TLN, with IC50 values ranging from 0.0115 μM (compound 3) to 122,637 μM (compound 29). Compound 3 [3-phenyl-2-(trifluoromethyl) quinazolin-4(3H)-one] (IC50 = 0.0115 μM) and compound 35 [3-(isopropylideneamino)-2,2-dimethyl-2,3-dihydroquinazolin-4 (1H)-one] (IC50 = 0.2477 μM) were found to be the most potent inhibitors.  相似文献   

19.
IntroductionThe aim of this study was to determine the within- and between-day reliability of lower limb biomechanical variables collected during single leg squat (SLS) and single leg landing (SLL) tasks.Methods15 recreational athletes took part in three testing sessions, two sessions on the same day and another session one week later. Kinematic and kinetic data was gathered using a ten-camera movement analysis system (Qualisys) and a force platform (AMTI) embedded into the floor.ResultsThe combined averages of within-day ICC values (ICCSLS = 0.87; ICCSLL = 0.90) were higher than between-days (ICCSLS = 0.81; ICCSLL = 0.78). Vertical GRF values (ICCSLS = 0.90; ICCSLL = 0.98) were more reliable than joint angles (ICCSLS = 0.85; ICCSLL = 0.82) and moments (ICCSLS = 0.83; ICCSLL = 0.87).DiscussionThis study demonstrates that all joint angles, moments, and vertical ground reaction force (GRF) variables obtained during both tasks showed good to excellent consistency with relatively low standard error of measurement values. These findings would be of relevance to practitioners who are using such measures for screening and prospective studies of rehabilitative techniques.  相似文献   

20.
Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer’s disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine–coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki = 16.7 nM) against human AChE and about 2-fold lower potency (Ki = 16.1 nM) against BChE than tacrine (Ki = 35.7 nM for AChE, Ki = 8.7 nM for BChE), respectively. In addition, some of the tacrine–coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine–coumarin hybrid is an interesting multifunctional lead for the AD drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号