首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasmids of IncQ-family are distinguished by having a unique strand-displacement mechanism of replication that is capable of functioning in a wide variety of bacterial hosts. In addition, these plasmids are highly mobilizable and therefore very promiscuous. Common features of the replicons have been used to identify IncQ-family plasmids in DNA sequence databases and in this way several unstudied plasmids have been compared to more well-studied IncQ plasmids. We propose that IncQ plasmids can be divided into four subgroups based on a number of mutually supportive criteria. The most important of these are the amino acid sequences of their three essential replication proteins and the observation that the replicon of each subgroup has become fused to four different lineages of mobilization genes. This review of IncQ-family plasmid diversity has highlighted several events in the evolution of these plasmids and raised several questions for further research.  相似文献   

2.
Summary The promiscuous IncQ plasmid pKT210 (Cmr, Smr) is efficiently transferred by transpecific conjugation from Escherichia coli to the facultatively heterotrophic cyanobacterium Synechocystis PCC6803 when mobilized by a helper plasmid coding for IncP transfer functions. The IncQ plasmid is stably maintained in the cyanobacterium as an autonomously replicating multicopy plasmid with no detectable structural alterations and can be recovered by transformation back to E. coli when using a mcrA mcrB host. Thus, the replicative host-range of IncQ plasmids extends beyond purple bacteria to the distinct procaryotic taxon of cyanobacteria, allowing the use of these small plasmids as convenient cloning vectors in Synechocystis PCC6803 and presumably also in cyanobacteria that are not amenable to genetic transformation. In contrast, an IncQ plasmid bearing the TRP1 gene of Saccharomyces cerevisiae failed to replicate when transferred to that yeast by transformation.  相似文献   

3.
The first observation of plasmid retrotransfer by plasmids isolated from environmental sources is reported. A high incidence of retrotransferring ability amongst plasmids isolated from epilithic bacteria was found; some of these plasmids retrotransferred an IncQ plasmid at very high frequencies. Despite the broad host-range of the majority of the plasmids, only five out of 12 could be assigned to an incompatibility group by DNA hybridization. All five were designated IncP1; this revealed a limitation of probes derived from clinical sources for use with environmental isolates. Incompatibility testing by plate mating suggested that four additional plasmids displayed varying, albeit lower, degrees of incompatibility to the IncP1 plasmid RP1.  相似文献   

4.
Erhard Tietze 《Plasmid》1998,39(3):165-181
The analysis of the complete nucleotide sequence of the small resistance plasmid pIE1107 revealed a close similarity to the well-known IncQ plasmids. Highly conserved replication proteins and nearly identical origins of replication (oriV) suggest equivalent functions in the related replication systems. However, pIE1107 contains two copies of IncQ-oriV-like DNA which are slightly different regarding the iterons. Upon deletion of a silent copy of IncQ-oriV-like DNA the resulting plasmid is fully compatible with IncQ plasmids, indicating that there is no mutual communication between the replication control of the respective replicons. Experiments with clonedoriV DNA strongly suggest that the replication initiation protein of pIE1107 has specialized into the distinct target-iterons of its ownoriV which differs only by a few nucleotides from theoriV of IncQ plasmids. Implications from the apparent highly specific protein–DNA recognition and from the incompatibility properties of pIE1107 for the evolution of a family of compatible, IncQ-like plasmids are discussed.  相似文献   

5.
The gram-negative anaerobe Dichelobacter nodosus is the primary causative agent of ovine footrot, a mixed bacterial infection of the hoof. We report here the characterization of a novel native plasmid, pDN1, from D. nodosus. Sequence analysis has revealed that pDN1 has a high degree of similarity to broad-host-range plasmids belonging, or related, to Escherichia coli incompatibility group Q. However, in contrast to these plasmids, pDN1 encodes no antibiotic resistance determinants, lacks genes E and F, and hence is smaller than all previously reported IncQ plasmids. In addition, pDN1 belongs to a different incompatibility group than the IncQ plasmids to which it is related. However, pDN1 does contain the replication and mobilization genes that are responsible for the extremely broad host range characteristic of IncQ plasmids, and derivatives of pDN1 replicate in E. coli. In addition, the mobilization determinants of pDN1 are functional, since derivatives of pDN1 are mobilized by the IncPalpha plasmid RP4 in E. coli.  相似文献   

6.
7.
Plasmid conjugation systems are composed of two components, the DNA transfer and replication system, or Dtr, and the mating pair formation system, or Mpf. During conjugal transfer an essential factor, called the coupling protein, is thought to interface the Dtr, in the form of the relaxosome, with the Mpf, in the form of the mating bridge. These proteins, such as TraG from the IncP1 plasmid RP4 (TraG(RP4)) and TraG and VirD4 from the conjugal transfer and T-DNA transfer systems of Ti plasmids, are believed to dictate specificity of the interactions that can occur between different Dtr and Mpf components. The Ti plasmids of Agrobacterium tumefaciens do not mobilize vectors containing the oriT of RP4, but these IncP1 plasmid derivatives lack the trans-acting Dtr functions and TraG(RP4). A. tumefaciens donors transferred a chimeric plasmid that contains the oriT and Dtr genes of RP4 and the Mpf genes of pTiC58, indicating that the Ti plasmid mating bridge can interact with the RP4 relaxosome. However, the Ti plasmid did not mobilize transfer from an IncQ relaxosome. The Ti plasmid did mobilize such plasmids if TraG(RP4) was expressed in the donors. Mutations in traG(RP4) with defined effects on the RP4 transfer system exhibited similar phenotypes for Ti plasmid-mediated mobilization of the IncQ vector. When provided with VirD4, the tra system of pTiC58 mobilized plasmids from the IncQ relaxosome. However, neither TraG(RP4) nor VirD4 restored transfer to a traG mutant of the Ti plasmid. VirD4 also failed to complement a traG(RP4) mutant for transfer from the RP4 relaxosome or for RP4-mediated mobilization from the IncQ relaxosome. TraG(RP4)-mediated mobilization of the IncQ plasmid by pTiC58 did not inhibit Ti plasmid transfer, suggesting that the relaxosomes of the two plasmids do not compete for the same mating bridge. We conclude that TraG(RP4) and VirD4 couples the IncQ but not the Ti plasmid relaxosome to the Ti plasmid mating bridge. However, VirD4 cannot couple the IncP1 or the IncQ relaxosome to the RP4 mating bridge. These results support a model in which the coupling proteins specify the interactions between Dtr and Mpf components of mating systems.  相似文献   

8.
Abstract: A 12.4-kb plasmid, pTF-FC2, that was isolated from Thiobacillus ferrooxidans and which is capable of replication in a wide range of Gram-negative bacteria, has been sequenced. The extent of the regions involved in both replication and mobilization have been delineated. The site of initiation of replication ( oriV ) has been localized on a 185-bp fragment and the origin of transfer ( oriT ) on a 138-bp fragment. Three proteins that were essential for replication and four that were essential for mobilization have been identified. The origin of replication was clearly similar to that of the IncQ plasmids although no complementation or incompatibility between pTF-FC2 and the IncQ plasmid, R300B, was detected. There was a clear similarity in the size,location and amino acid sequence of the proteins of the pTF-FC2 mobilization region with those of the TraI region of the IncP plasmids, RP4 and R751.Two inverted repeated sequences which had 37/38-bp and 38/38-bp sequence identity with the Tn 21 transposon were identified. The C-terminal part of a transposase and the N-terminal portion of a resolvase were located between the inverted repeats. These open reading frames are most likely the remnants of a defective transposon. A protein with homology to a mercury- resistance regulator was also present within the transposon-like element although no gene encoding for mercury reductase could be indentified.  相似文献   

9.
The broad host-range plasmid pBS222 is compatible with broad host-range plasmids of all known incompatibility groups and codes for tetracycline resistance. pBS222 is efficiently mobilized by Inc P-1 plasmid RP4 and is also capable of conjugal transfer with low efficiency to different gramnegative microorganisms. The size of the plasmid (17.2 Kb) has been determined and its physical map has been constructed. The plasmid harbours the unique sites for restriction endonucleases BglII, HindIII, HpaI, KpnI, SmaI and XbaI cleawage. The plasmid derivatives pBS352-pBS355 have been obtained that carry kan- and cam-determinants in addition to tet-gene. Plasmid pBS355 has been used to clone EcoRI-fragments of phage lambda DNA. The plasmid pBS222 regions essential for replication and maintenance have been localized by DNA hybridization analysis of its mini-derivatives pBS356 and 357. pBS222 is a convenient model for investigations of the plasmid replication and maintenance mechanisms in different bacterial hosts as well as for the construction of broad host-range vectors.  相似文献   

10.
Twelve plasmids carrying genes for streptomycin and sulfonamide resistance were studied for the number and distribution of sites on the plasmid moleucles susceptible to cleavage by the restriction endonuclease EcoRI. Ten of the twelve were found to have a single cut site, one plasmid (R678) had three such sites, and plasmid PB165, which was isolated as three supercoiled deoxyribonucleic acid species with molecular weights 7.4 x 10(6), 14.7 x 10(6), and 21.4 x 10(6) was reduced to a single (linear) species of molecular weight 7.6 x 10(6) after cutting with EcoRI. We conclude that PB165 forms oligomers in Escherichia coli and that the number of copies of these per chromosome is more consistant and that the number of copies of these per chromosome is more consistent with a negative than a positive control mechanism for plasmid replication. Compatibility testing of a positive control mechanism for plasmid replication. Compatibility testing of these plasmids showed they all belong to the same incompatibility group, which we designate IncQ, suggesting that they may have come from a common ancestor.  相似文献   

11.
A new IncQ plasmid R89S: Properties and genetic organization   总被引:4,自引:0,他引:4  
The new small (8.18 kb) streptomycin-resistant multicopy plasmid R89S of the Q group incompatibility is described. In contrast to other IncQ plasmids, replication of R89S is dependent on DNA polymerase 1 and proceeds in the absence of de novo protein synthesis. According to our data up to now, the host spectrum of the plasmid R89S is limited to Enterobacteriaceae. A genetic map of the plasmid R89S has been prepared through the construction of deletion and insertion derivatives. Phenotypic analysis of these derivatives has identified the location of genes encoding resistance to streptomycin, and the region essential for mobilization of R89S. The origin of vegetative replication has been located within a 0.7-kb fragment. Another region highly homologous to oriV of the plasmid RSF1010, but not functioning as an origin of replication, was localized. Two regions involved in the expression of incompatibility have also been identified. The data from the restriction analyses, DNA-DNA hybridization, and genetic experiments enable us to assume that the plasmid R89S is a naturally occurring recombinant between part of an IncQ plasmid and another narrow host range replicon of unknown incompatibility group.  相似文献   

12.
A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study.  相似文献   

13.
Primer systems for PCR amplification of different replicon-specific DNA regions were designed on the basis of published sequences for plasmids belonging to the incompatibility (Inc) groups IncP, IncN, IncW, and IncQ. The specificities of these primer systems for the respective Inc groups were tested with a collection of reference plasmids belonging to 21 different Inc groups. Almost all primer systems were found to be highly specific for the reference plasmid for which they were designed. In addition, the primers were tested with plasmids which had previously been grouped by traditional incompatibility testing to the IncN, IncW, IncP, or IncQ group. All IncQ plasmids gave PCR products with the IncQ primer systems tested. However, PCR products were obtained for only some of the IncN, IncP, and IncW group plasmids. Dot blot and Southern blot analyses of the plasmids revealed that PCR-negative plasmids also failed to hybridize with probes derived from the reference plasmids. The results indicated that plasmids assigned to the same Inc group by traditional methods might be partially or completely different from their respective reference plasmids at the DNA level. With a few exceptions, all plasmids related to the reference plasmid at the DNA level also reacted with the primer systems tested. PCR amplification of total DNA extracted directly from different soil and manure slurry samples revealed the prevalence of IncQ- and IncP-specific sequences in several of these samples. In contrast, IncN- and IncW-specific sequences were detected mainly in DNA obtained from manure slurries.  相似文献   

14.
Plasmids belonging to Escherichia coli incompatibility group Q are relatively small (approximately 5 to 15 kb) and able to replicate in a remarkably broad range of bacterial hosts. These include gram-positive bacteria such as Brevibacterium and Mycobacterium and gram-negative bacteria such as Agrobacterium, Desulfovibrio, and cyanobacteria. These plasmids are mobilized by several self-transmissible plasmids into an even more diverse range of organisms including yeasts, plants, and animal cells. IncQ plasmids are thus highly promiscuous. Recently, several IncQ-like plasmids have been isolated from bacteria found in environments as diverse as piggery manure and highly acidic commercial mineral biooxidation plants. These IncQ-like plasmids belong to different incompatibility groups but have similar broad-host-range replicons and mobilization properties to the IncQ plasmids. This review covers the ecology, classification, and evolution of IncQ and IncQ-like plasmids.  相似文献   

15.
Nonconjugative R-plasmids pBS76 and pBS94 (Sm Su), pBS95 and pBS96 (Sm Su Ap) isolated from clinical strains of Pseudomonas aeruginosa and plasmids pKMR281-pKMN284 (Sm Su), pKMR285-pKMR286 (Sm Su Tc) isolated from clinical strains of enterobacteria have been studied. Restriction maps of these plasmids are presented in the paper with some of plasmid genes for antibiotic resistance localized on them. The resistance determinants of plasmids pBS95 and pBS96 are shown to be included in transposon Tn3612 analogous to Tn3. Plasmids pBS76, pBS94-96 are of the wide host range and belong to incompatibility group P4 (IncQ). Plasmids pKMR281-pKMR286 are mutually incompatible and share the conspicuous DNA homology. They are inherited only by enterobacteria and are compatible with IncQ plasmids but in contrast to them are mobilized by RP4 plasmid with lower frequency.  相似文献   

16.
Antibiotic resistance plasmids were exogenously isolated in biparental matings with piggery manure bacteria as plasmid donors in Escherichia coli CV601 and Pseudomonas putida UWC1 recipients. Surprisingly, IncQ-like plasmids were detected by dot blot hybridization with an IncQ oriV probe in several P. putida UWC1 transconjugants. The capture of IncQ-like plasmids in biparental matings indicates not only their high prevalence in manure slurries but also the presence of efficiently mobilizing plasmids. In order to elucidate unusual hybridization data (weak or no hybridization with IncQ repB or IncQ oriT probes) four IncQ-like plasmids (pIE1107, pIE1115, pIE1120, and pIE1130), each representing a different EcoRV restriction pattern, were selected for a more thorough plasmid characterization after transfer into E. coli K-12 strain DH5alpha by transformation. The characterization of the IncQ-like plasmids revealed an astonishingly high diversity with regard to phenotypic and genotypic properties. Four different multiple antibiotic resistance patterns were found to be conferred by the IncQ-like plasmids. The plasmids could be mobilized by the RP4 derivative pTH10 into Acinetobacter sp., Ralstonia eutropha, Agrobacterium tumefaciens, and P. putida, but they showed diverse patterns of stability under nonselective growth conditions in different host backgrounds. Incompatibility testing and PCR analysis clearly revealed at least two different types of IncQ-like plasmids. PCR amplification of total DNA extracted directly from different manure samples and other environments indicated the prevalence of both types of IncQ plasmids in manure, sewage, and farm soil. These findings suggest that IncQ plasmids play an important role in disseminating antibiotic resistance genes.  相似文献   

17.
Replication of plasmids in gram-negative bacteria.   总被引:29,自引:1,他引:28       下载免费PDF全文
Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical data about the initial priming reaction of DNA synthesis exist. Detailed models have been developed for the initiation and regulation of ColE1 replication. For other plasmids, such as pSC101, some hypotheses for priming mechanisms and replication initiation are presented. These hypotheses are based on experimental evidence and speculative comparisons with other systems, e.g., the chromosomal origin of E. coli. In most cases, knowledge concerning plasmid replication is limited to regulation mechanisms. These mechanisms coordinate plasmid replication to the host cell cycle, and they also seem to determine the host range of a plasmid. Most plasmids studied exhibit a narrow host range, limited to E. coli and related bacteria. In contrast, some others, such as the IncP plasmid RK2 and the IncQ plasmid RSF1010, are able to replicate in nearly all gram-negative bacteria. This broad host range may depend on the correct expression of the essential rep genes, which may be mediated by a complex regulatory mechanism (RK2) or by the use of different promoters (RSF1010). Alternatively or additionally, owing to the structure of their origin and/or to different forms of their replication initiation proteins, broad-host-range plasmids may adapt better to the host enzymes that participate in initiation. Furthermore, a broad host range can result when replication initiation is independent of host proteins, as is found in the priming reaction of RSF1010.  相似文献   

18.
pFM739, an R plasmid from Neisseria sicca that encodes penicillin, streptomycin and sulphonamide resistance, and the enterobacterial IncQ(P-4) plasmid RSF1010, which encodes streptomycin and sulphonamide resistance, were incompatible, and were mobilized by the same conjugative plasmids. Restriction mapping confirmed a high degree of similarity between both R plasmids; pFM739 carried DNA fragments corresponding to the known replication and resistance regions of RSF1010. pFM739 also carried an extra segment with the same restriction map as that described for the beta-lactamase-coding region of transposon Tn3. It is suggested that the R plasmids isolated from commensal Neisseria sp. could have resulted from transposition of a Tn3-like genetic element to an RSF1010-like plasmid, and that they contain deletion derivatives of transposon Tn3.  相似文献   

19.
Caulobacter crescentus is a bacterium with a distinctive life cycle and so it is studied as a cell development model. In addition, we have adapted this bacterium for recombinant protein production and display based on the crystalline surface protein (S)-layer and its C-terminal secretion signal. We report here the development of small, high-copy-number plasmid vectors and methods for producing an obligate expression host. The vectors are based on a narrow-host-range colE1-replicon-based plasmid commonly used in Escherichia coli, to which was added the replication origin of the IncQ plasmid RSF1010. C. crescentus strains were modified to enable plasmid replication by introduction of the RSF1010 repBAC genes at the recA locus. The small (4.0-4.5 kb) plasmids were in high copy numbers in both C. crescentus and E. coli and amenable to rapid methods for plasmid isolation and DNA sequencing. The method for introducing repBAC is suitable for other C. crescentus strains or any bacterium with an adequately homologous recA gene. Application of the vector for protein expression, based on the type I secretion system of the S-layer protein, when compared to constructs in broad-host-range plasmids, resulted in reduced time and steps required from clone construction to recombinant protein recovery and increased protein yield.  相似文献   

20.
The broad host-range IncP-1 plasmids RP4 and RK2 were transferred by conjugation from Escherichia coli to Alcaligenes eutrophus H16. Among the transconjugants selected on media containing tetracycline, a considerable number did not express kanamycin resistance. By comparing restriction patterns of plasmids isolated from a large number of transconjugants a variety of different deletion derivatives were found. All of these possess more or less extended deletions always including parts of the tra 1-region. The plasmids RP4 and RK2, once established in A. eutrophus H16 showed a high stability and it can be concluded that deletion formation is connected with the conjugation process. Evidence is given that degradation of DNA entering an A. eutrophus recipient cell during the conjugative transfer process may be involved in deletion formation. Furthermore, the finding of a small deletion derivative of RP4 lacking the transacting replication function trfB and the entire kil-kor-system may allow the assumption that these gene functions are not essential for replication and maintenance of RP4 in A. eutrophus hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号