首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In the present study, we describe changes in the primary and secondary structural patterns of glucoamylase during starch hydrolysis under microwave irradiation using SDS-PAGE and circular dichroism (CD) spectroscopy. Our SDS-PAGE results show that the primary structure of glucoamylase did not change after microwave irradiation. According to the CD spectra, the positive peak height (λ = 193 nm) of the microwave-irradiated samples decreased by 36.4–68.2% compared to those without irradiation, whereas the double negative peak height (λ = 206 nm, λ = 220 nm) increased by 10.8–31.4%. In addition, the positive peak (λ = 193 nm) shifted by 0.2–3 nm. After treatment of glucoamylase with microwave irradiation, the α-helical content of glucoamylase decreased sharply, whereas the β-sheet, β-turn and random coil content increased gradually. The conformational changes of glucoamylase after microwave irradiation provide theoretical support for the mechanism whereby microwave irradiation accelerates starch hydrolysis catalyzed by glucoamylase.  相似文献   

2.
The conventional approaches for treating bone defects such as autografts donor tissue shortages and allografts transmission of diseases pose many shortcomings. The objective of this study was to design a nano strontium/magnesium doped hydroxyapatite (Sr/Mg-HA) with chitosan (CTS) and multi-walled carbon nanotubes (MWCNT) (Sr/Mg-HA/MWCNT/CTS) biocomposite was created to support the growth of osteoblasts using a solvent evaporation method. To help the growth of osteoblasts, a solvent evaporation technique was used to design a nano strontium/magnesium doped hydroxyapatite with chitosan and multi-walled carbon nanotubes biocomposite. We studied the biocompatibility and efficiency in vitro of biocomposite following physicochemical analyzes. Tests of biocompatibility, cell proliferation, mineralization, and osteogenic differentiation have shown that in-vitro safety and effectiveness of biocomposite are good. The performance of biocomposite was more efficient in in-vitro as well as in vivo experiments than in Sr/Mg-HA nanoparticles. Briefly, the Sr/Mg-HA/MWCNT/CTS biocomposite is an ideal candidate for effective bone repair in clinics with excellent mechanical properties with durable multi-biofunctional antibacterial properties and osteoinductivity.  相似文献   

3.
Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with a precise molecular structure, high geometric symmetry, and a large number of terminal groups. In this study, PAMAM was grafted onto the surface of silica by microwave irradiation and characterized by Fourier transform infrared spectroscopy and elemental analysis. A novel immobilized cellulase was developed based on enzyme immobilization onto the prepared PAMAM-grafted silica and applied in microwave-assisted chitosan enzymolysis. The results show that the efficiency of cellulase immobilization increased with increasing generations of PAMAM. A high enzymatic hydrolysis efficiency was obtained for a 7 mg ml?1 chitosan solution at pH 6.2 and 50 °C with 40 W microwave-assisted enzymolysis (20 min) compared with a conventional enzymolysis protocol (3 h). The experimental results indicate that this rapid and efficient enzymolysis method combines the advantages of both PAMAM and microwave-assisted technology, which can be adapted to high-throughput enzyme assay in biochemical and clinical research.  相似文献   

4.
Substituted polyaniline/chitosan(PANIs/Ch) composites were chemically synthesized by using ammonium peroxydisulfate as oxidant and characterized by measurements of conductivity, FTIR, UV–vis, SEM and TGA techniques. FTIR spectra of the composites revealed that there is a strong interaction between substituted polyanilines and chitosan. Among the substituted polyaniline/chitosan composites synthesized, poly(N-ethylaniline)/chitosan PNEANI/Ch has the highest conductivity with a value of 1.68 × 10?4 S/cm. The P2EANI/Ch composite exhibited higher thermal stability than the other composites. SEM images of the composites showed an agglomerated granular morphology of substituted polyaniline particles coated on the surface of chitosan.  相似文献   

5.
The present study demonstrates covalent immobilization of Kluyveromyces lactis β galactosidase on functionalized multi-walled carbon nanotubes (MWCNTs). Highly efficient surface modification of MWCNTs was achieved by glutaraldehyde for binding greater amount of enzyme. X-ray diffraction analysis and UV visible spectroscopy of MWCNTs showed them to be entirely dispersive in aqueous solution. Transmission electron microscopy showed that MWCNTs were of 20 nm size. Thermogravimetric analysis further revealed the stability of glutaraldehyde modified MWCNT as an ideal matrix for enzyme immobilization. The optimal pH for soluble and immobilized β galactosidase was observed at pH 7.0 while the optimal operating temperatures were observed at 40 °C and 50 °C, respectively. Moreover, our findings demonstrated that β galactosidase immobilized on surface functionalized MWCNTs retained greater biocatalytic activity at higher galactose concentration, and upon repeated uses as compared to enzyme in solution.  相似文献   

6.
4-Chloro-2-methylphenoxyacetic acid (MCPA) is a selective systemic herbicide which is absorbed by leaves and roots. MCPA esters are preferred due to their low water solubility and environmental friendliness. Esterification of MCPA with n-butanol was investigated as a model reaction using immobilized enzymes under the influence of microwave irradiation. Different immobilized enzymes such as Novozym 435, Lipozyme TL IM, Lipozyme RM IM and Lipase AYS Amano were studied under microwave irradiation amongst which Novozym 435 (immobilized Candida antarctica lipase B) was the best catalyst. Effects of various parameters were systematically studied on rates and conversion. Under microwave irradiation, the initial rates were observed to increase up to 2-fold. Under optimized conditions of 0.1 mmol MCPA and 0.3 mmol n-butanol in 15 mL 1,4-dioxane as solvent, Novozym 435 showed a conversion of 83% at 60 °C in 6 h. Based on initial rate and progress curve data, the reaction was shown to follow the Ping Pong bi–bi mechanism with inhibition by MCPA and n-butanol. Esterification of MCPA was also studied with different alcohols such as isopropyl alcohol, n-pentanol, n-hexanol, benzyl alcohol and 2-ethyl-1-hexanol.  相似文献   

7.
Chitosan scaffolds were fabricated by application of thermally induced phase separation from aqueous solutions of unmodified chitosan and hydrophobically modified chitosan polymer. The final pore structure, in terms of diameter and geometry, were correlated to freezing temperature and freezing time for both the unmodified and hydrophobically modified chitosan polymer. Results showed that the resulting pore structure is strongly dependent upon the freezing temperature and less dependant upon the freezing time. For scaffolds produced from unmodified chitosan, the pore size decreased as expected with decreasing freezing temperature from ?5 °C to ?10 °C. However, an inconsistency in this trend was observed as the freezing temperature was decreased to ?20 °C. Combined analysis of pore size distribution and average pore diameter suggested that the freezing process was mainly mass transfer dominated at ?5 °C and ?10 °C, but principally heat transfer dominated at ?20 °C. In comparison, the scaffolds produced from hydrophobically modified chitosan (butyl-chitosan) followed the expected trend of decreasing mean pore diameter with decreased freezing temperatures throughout the entire temperature range. The scaffolds produced from the unmodified chitosan were more stable and rigid, and possessed average pore diameters that were generally smaller than those fabricated from the hydrophobically modified chitosan. The generally larger pores in the butyl-modified chitosan scaffolds might be explained by increased phase separation rates due to the introduced hydrophobicity of the chitosan polymer. Among the scaffolds fabricated from the butyl-modified chitosan, those produced at ?20 °C yielded the most uniform pore structure, the smallest average pore diameters, and the least temporal broadening of pore size distribution.  相似文献   

8.
Proton conducting biopolymer networks have potential use for bio-sensors. The cost-effective, non-hazardous and environmentally safe biopolymer, such as chitosan, is an attractive feature for bio-sensors. Cholesterol oxidase was immobilized in conducting network via complexation of chitosan with alginic acid. A method for the preparation of the complex along with characterization by elemental analysis, FTIR spectroscopy, TGA and DSC were reported. The proton conductivity chitosan–alginic acid network was studied via impedance spectroscopy under humidified condition. The complex polymer electrolyte with x = 1 exhibited maximum proton conductivity of 1.4 × 10?3 S/cm at RT, RH  50%. The potential use of this network in enzyme immobilization was studied by manufacturing cholesterol oxidase entrapped polymer networks. Additionally, the maximum reaction rate (Vmax) and Michaelis–Menten constant (Km) were investigated for the immobilized cholesterol oxidase. Also, temperature and pH optimization studies were performed, and operational stability and shelf life of the polymer network were examined.  相似文献   

9.
Overoxidized polypyrrole/multi-walled carbon nanotubes (OPPy/MWNTs) modified electrode has been developed for sensitively detecting dopamine (DA). OPPy films developed outside MWNTs might have a porous morphology. Thus, OPPy/MWNTs films developed by this method do not reject ascorbic acid (AA). However, OPPy/MWNTs modified electrode shows largely enhancing oxidative current responses of DA. When combined with liquid chromatography, it not only obtains a low detection limit of 7.5 × 10?10 mol L?1 for DA, but also improves the selectivity of DA detection. Mechanisms for the enhancement are also well discussed in this paper. With this approach, microdialysis has been employed for successful assessment of DA in rat striatum.  相似文献   

10.
Herein, a novel third-generation glucose biosensor based on unique hollow nanostructured Pt decorated multiwall carbon nanotubes (HPt-CNTs) composites was successfully constructed. The HPt-CNTs composites were successfully prepared and cast on the glassy carbon electrode (GCE) surface directly. With the help of electrostatic adsorption and covalent attachment, the negative l-cysteine (l-cys) and the positive poly(diallydimethylammonium) chloride (PDDA) protected gold nanoparticles (PDDA-Au) were modified on the resulting electrode surface subsequently, which provided further immobilization of glucose oxidase (GOD). Exploitation of the unique properties of HPt-CNTs composites led to the achievement of direct electron transfer between the electrode and the redox active centers of GOD, and the electrode exhibited a pair of well-defined reversible redox peaks with a fast heterogeneous electron transfer rate. In particular, the detection limit (4 × 10−7 M) of this biosensor was significantly lower and the linear range (1.2 μM–8.4 mM) was much wider than similar carbon nanotubes (CNTs) and Pt-based glucose biosensors. The resulted biosensor also showed high sensitivity and freedom of interference from other co-existing electroactive species, indicating that our facile procedure of immobilizing GOD exhibited better response and had potential application for glucose analysis.  相似文献   

11.
Crustacean waste is one of the most severe issues, posing significant environmental and health risks. This study aims to improve managing marine waste by isolating chitosan from Procambarus clarkii by devising a new methodology, incorporating technical steps, e.g., washing, decolorization and deacetylation under a reflexive condenser and dialysis purification. A comparison was made between the prepared P. clarkii chitosan and four types of shrimp chitosans: commercial, high, low, and nano. The obtained chitosan has a low molecular weight and viscosity compared to the commercial shrimp chitosan used in various applications. P. clarkii chitosan was prepared in high quality from a cheap source, as its color and quality were better than those of the commercial shrimp chitosan. The new methodology has successfully extracted chitosan from P. clarkii in a good quality and high purity, achieving 89% deacetylation, high solubility, high purity, and medium molecular weight. Analysis of the different chitosan samples with Fourier transform infrared spectroscopy (FTIR), atomic force microscopy, Raman spectrum referred indicated high similarity between the chitosan different types, regardless of its source. The 3D image of P. clarkii showed the distance between the highest and most profound points of extracted chitosan is 728.94 nm, revealing homogeneous, smooth surfaces, apparently free of pores and cracks. FTIR and Raman spectrum of P. clarkii indicated various functional groups, e.g., alcohol, amines, amides, and phenols. These active groups are responsible for about 60% of the antioxidant activity of that product. Evaluating the quality traits indicated the excellence of the chitosan prepared from P. clarkii, especially in color, viscosity, and antioxidant activity, nominating it for different food applications.  相似文献   

12.
An electrogenic biofilm was developed on a macroporous chitosan-carbon nanotube (CHIT-CNT) electrode under constant poised potential (?0.25 V versus Ag/AgCl reference electrode) and flow through conditions utilizing the effluent of an anaerobic digester as both the inoculant and substrate for the electrogenic biofilm. After 125 days of inoculation the bioelectrode demonstrated an open circuit potential of ?0.62 V and a current density of 9.43 μA cm?3 (at ?0.25 V). Scanning electron microscopy images indicate thorough surface coverage of the biofilm with a high density of bacterial nanowires physically connecting bacteria to bacteria and bacteria to carbon nanotube (electrode surface) suggesting the nanowires are electrically conductive. DGGE was used to identify the major bacterial and archaeal populations.  相似文献   

13.
The paper deals with the synthesis of organic–inorganic hybrid membranes, Hy, obtained by simultaneous grafting and crosslinking of chitosan with epoxy-terminated polydimethylsiloxane and γ-glycidoxypropyltrimethoxysilane. Porous membranes, HyP, were also obtained by acid decomposition, at different temperatures (25 and 50 °C), of calcium carbonate porogenic agent trapped inside the material. As proved by electron and atomic force microscopy, the non-porous membrane is a phase segregated material with spherical domains (10–40 μm) of silica core covered by hydrophobic siloxane in a hydrophilic chitosan matrix. The porous membranes showed different morphologies with irregular circular pores of 10–30 μm diameters for the membranes obtained at lower temperature, while the membranes prepared at 50 °C tend to adopt a plan-parallel porosity. The water contact angles of hybrid membranes (78°) and pure chitosan membranes (72°) indicated a lower hydrophilic character of modified chitosan. As a result of the crosslinking and of increased hydrophobicity, the hybrid membranes were characterized by a smaller water swelling degree (about 30%) as compared to pure chitosan membrane (700%). However, the presence of the pores in HyP membranes determined an increase of the water adsorption (maximum swelling degree, about 100%). The hybrid membranes possess a slightly higher thermal stability as compared to chitosan (first initial decomposition temperature, 147 and 175 °C for chitosan and hybrid membranes, respectively), but a lower one as compared to pure polydimethylsiloxane. The high storage modulus of chitosan (about 5.1 × 109 Pa at 20 °C) is decreased by about one order of magnitude by the introduction of the highly flexible polysiloxane and the hybrid membranes are more flexible.  相似文献   

14.
In this paper, a simple and versatile coacervation technique has been developed by using an ultrasound-assisted oil/water emulsion method for the preparation of antifungal agent-loaded microcapsules. Two types of chitosan microcapsules are successfully prepared. The mean particle size of the chitosan/miconazole nitrate microcapsules is 2.6 μm and that of the chitosan/clotrimazole microcapsules is 4.1 μm. The encapsulation efficiency of the chitosan/miconazole nitrate microcapsules (77.58–96.81%) is relatively higher than that of the chitosan/clotrimazole microcapsules (56.66–93.82%). The in vitro drug release performance of the microcapsules shows that the chitosan/miconazole nitrate microcapsules release about 49.5% of the drug while chitosan/clotrimazole microcapsules release more than 66.1% of the drug after 12 h under a pressure of 5 kg at pH 5.5, which is similar to the pH of human skin. The prepared drug-loaded microcapsules could be applied onto bandages or socks, and will continuously release antifungal drugs in a controlled manner under pressure.  相似文献   

15.
Chitin in the α and the β forms has been extracted from different marine crustacean from the Arabian Gulf. The contents of the various exoskeletons have been analyzed and the percent of the inorganic salt (including the various elements present), protein and the chitin was determined. Deacetylation of the different chitin produced was conducted by the conventional thermal heating and by microwave heating methods. Microwave heating has reduced enormously the time of heating from 6–10 h to 10–15 min, to yield the same degree of deacetylation and higher molecular weight chitosan. This technique can save massive amount of energy when implemented on a semi-industrial or industrial scale. The chitin and the obtained chitosan were characterized by elemental analysis, XRD, NMR, FTIR and thermogravimetric measurements. XRD analysis showed that chitosan has lower crystallinity than its corresponding chitin; meanwhile its thermal stability is also lower than chitin.  相似文献   

16.
This research reports the fabrication of silver nanoparticles (AgNPs) from endophytic fungus, Amesia atrobrunnea isolated from Ziziphus spina-christi (L.). Influencing factors for instance, thermal degree of incubation, media, pH, and silver nitrate (AgNO3) molarity were optimized. Then, the AgNPs were encapsulated with chitosan (Ch-AgNPs) under microwave heating at 650 W for 90 s. Characterization of nanoparticles was performed via UV–visible (UV–vis) spectrophotometer, Fourier-transform infrared spectrophotometer (FTIR), zeta potential using dynamic-light scattering (DLS), and field-emission-scanning electron microscope (FE-SEM). Anti-fungal activity of Ch-AgNPs at (50, 25, 12.5, 6.25 mg/L) was tested against Fusarium oxysporum, Curvularia lunata, and Aspergillus niger using the mycelial growth inhibition method (MGI). Results indicated that Czapek-dox broth (CDB) with 1 mM AgNO3, an acidic pH, and a temperature of 25–30 °C were the optimum for AgNPs synthesis. (UV–vis) showed the highest peak at 435 nm, whereas Ch-AgNPs showed one peak for AgNPs at 405 nm and another peak for chitosan at 230 nm. FTIR analysis confirmed that the capping agent chitosan was successfully incorporated and interacted with the AgNPs through amide functionalities. Z-potential was −19.7 mV for AgNPs and 38.9 mV for Ch-AgNPs, which confirmed the significant stability enhancement after capping. FES-SEM showed spherical AgNPs and a reduction in the nanoparticle size to 44.65 nm after capping with chitosan. The highest mycelial growth reduction using fabricated Ch-AgNPs was 93% for C. lunata followed by 77% for A. niger and 66% F. oxysporum at (50 mg/L). Biosynthesis of AgNPs using A. atrobrunnea cell-free extract was successful. Capping with chitosan exhibited antifungal activity against fungal pathogens.  相似文献   

17.
K Li  J Wang  X Liu  X Xiong  H Liu 《Carbohydrate polymers》2012,90(4):1573-1581
In biomimicking the formation of collagen fiber/hydroxyapatite (HAp) in natural bone, electrospun cellulose nanofiber (CelluNF)/HAp composites were synthesized in simulated body fluid (SBF). Their morphology and structure were characterized by SEM, TEM, XRD and XPS. CelluNFs showed low bioactivity in inducing the growth of HAp. In order to improve this ability, CelluNFs were slightly phosphorylated with a degree of substitution of phosphate group of 0.28. The modified CelluNFs were highly effective in guiding the HAp growth along the fibers. The HAp crystal size in the composites was ca. 24 nm, and the lattice spacing of (2 1 1) plane was 2.83 Å. It was found that the HAps in the composites were calcium deficient. The CelluNF/HAp composites are highly porous materials with micro-, meso-, and macro-pores. A mechanism for the HAp growth on CelluNFs was presented. Such CelluNF/HAp composites can be potentially useful in the field of bone tissue engineering.  相似文献   

18.
Fungi are some of the most important organisms in the production of bioactive secondary metabolites. This success is related to the advances in biotechnology and also to the possibility of working with techniques such as the “OSMAC” (one strain-many compounds) to achieve different fungal secondary metabolites profiles upon modifying the culturing conditions. Using this approach, the fungal species Paecilomyces lilacinus was cultivated in potato dextrose broth under 14 different fermentative conditions by adding the bacterium Salmonella typhimurium to the growing medium in order to provide biotic stress. S. typhimurium was added alive or after inactivation by autoclave or microwave irradiation in different stages of fungal growth. Extracts were prepared by liquid–liquid extraction using ethyl acetate, a medium polarity solvent in order to avoid extracting culturing media components. Production of fatty acids of relevance for the pharmaceutical and food industries was enhanced by the modified fermentative conditions and they were identified and quantified. The extracts were evaluated for acetylcholinesterase inhibition and the more active extract (91 ± 2.91% inhibition) was prepared in large scale. From this active P. lilacinus extract, a novel pyridone alkaloid, named Paecilomide, was isolated and its structure was elucidated by modern nuclear magnetic resonance techniques and mass spectrometric analyses. Paecilomide (1) was also evaluated for acetylcholinesterase inhibition, presenting 57.5 ± 5.50% of acetylcholinesterase inhibition.  相似文献   

19.
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and the yields were 30.0-32.2% with that of chitosan C120 being the highest. The degree of N-deacetylation of chitosans (83.3–93.3%) increased but the average molecular weight (483–526 kDa) decreased with the prolonged reaction time. Crab chitosans showed lower lightness and WI values than purified chitin, chitosans CC and CS but higher than crude chitin. With the prolonged reaction time, the nitrogen (8.9–9.5%), carbon (42.2–45.2%) and hydrogen contents (7.9–8.6%) in chitosans prepared consistently increased whereas N/C ratios remained the same (0.21). Crab chitosans prepared showed a melting endothermic peak at 152.3–159.2 °C. Three chitosans showed similar microfibrillar crystalline structure and two crystalline reflections at 2θ = 8.8–9.0° and 18.9–19.1°. Overall, the characteristics of three crab chitosans were unique and differed from those of chitosan CC and CS as evidenced by the element analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction patterns.  相似文献   

20.
We investigated the production of chitosan oligosaccharides by continuous hydrolysis of chitosan in an enzyme membrane bioreactor, with the goal of improving the yield of physiologically active oligosaccharides (pentamers and hexamers) and achieving operational stability. The bioreactor was a continuous-flow stirred-tank reactor equipped with an ultrafiltration membrane with a molecular weight cut-off of 2000 Da, and the hydrolysis was accomplished with chitosanase from Bacillus pumilus. After optimization of the reaction parameters, such as the amount of enzyme, the yield of the target oligosaccharides produced in the membrane bioreactor with free chitosanase reached 52% on the basis of the fed concentration of chitosan. An immobilized chitosanase prepared by the multipoint attachment method was used to improve the operational stability of the membrane bioreactor. Under the optimized conditions, pentameric and hexameric chitosan oligosaccharides were steadily produced at 2.3 g/L (46% yield) for a month. The half-life of the productivity of the reactor was estimated to be 50 d under the conditions examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号