首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present examination includes manufacture and portrayal of cryogel bio-composite implants containing chitosan-gelatin (CS-GT), cerium–zinc doped hydroxyapatite (CS-GT/Ce-Zn-HA) by cryogelation technique. The prepared cryogel biocomposites (CS-GT/HA and CS-GT/Ce-Zn-HA) were described by scanning electron microscope (SEM) and X-Ray diffraction (XRD) contemplates. The expansion of Ce-Zn in the CS-GT implants essentially expanded growing, diminished swelling, expanded protein sorption, and expanded bactericidal movement. The CS-GT/Ce-Zn-HA biocomposite had non-toxic towards rodent osteoblast cells. So the created CS-GT/Ce-Zn-HA biocomposite has favorable and potential applications over the CS-GT/HA platforms for bone tissue engineering.  相似文献   

2.
Membranes of chitosan (CTS) and composite membranes of CTS with bioglass are prepared by solvent casting. The composite membranes are shown to induce the precipitation of apatite upon immersion in SBF. The biomineralization process is followed by measuring the variation of the viscoelastic properties of the membranes immersed in SBF, both online and offline. Non-conventional DMA is used to measure the change in the storage modulus, E', and the loss factor, tan δ, as a function of the immersion in SBF. A simple model is used to estimate the E' of the apatite layer formed in vitro that is about 130?MPa. This work shows that innovate mechanical tests can be useful to characterize the mechanical performance of composites under physiological conditions.  相似文献   

3.
4.
Collagen glycosaminoglycan (CG) scaffolds have been clinically approved as an application for skin regeneration. The goal of this study has been to examine whether a CG scaffold is a suitable biomaterial for generating human bone tissue. Specifically, we have asked the following questions: (1) can the scaffold support human osteoblast growth and differentiation and (2) how might recombinant human transforming growth factor-beta (TGF-β1) enhance long-term in vitro bone formation? We show human osteoblast attachment, infiltration and uniform distribution throughout the construct, reaching the centre within 14 days of seeding. We have identified the fully differentiated osteoblast phenotype categorised by the temporal expression of alkaline phosphatase, collagen type 1, osteonectin, bone sialo protein, biglycan and osteocalcin. Mineralised bone formation has been identified at 35 days post-seeding by using von Kossa and Alizarin S Red staining. Both gene expression and mineral staining suggest the benefit of introducing an initial high treatment of TGF-β1 (10 ng/ml) followed by a low continuous treatment (0.2 ng/ml) to enhance human osteogenesis on the scaffold. Osteogenesis coincides with a reduction in scaffold size and shape (up to 70% that of original). A notable finding is core degradation at the centre of the tissue-engineered construct after 49 days of culture. This is not observed at earlier time points. Therefore, a maximum of 35 days in culture is appropriate for in vitro studies of these scaffolds. We conclude that the CG scaffold shows excellent potential as a biomaterial for human bone tissue engineering.  相似文献   

5.
α-chitin hydrogel/nano hydroxyapatite (nHAp) composite scaffold have been synthesized by freeze-drying approach with nHAp and α-chitin hydrogel. The prepared nHAp and nanocomposite scaffolds were characterized using DLS, SEM, FT-IR, XRD and TGA studies. The porosity, swelling, degradation, protein adsorption and biomineralization (calcification) of the prepared nanocomposite scaffolds were evaluated. Cell viability, attachment and proliferation were investigated using MG 63, Vero, NIH 3T3 and nHDF cells to confirm that the nanocomposite scaffolds were cytocompatible and cells were found to attach and spread on the scaffolds. All the results suggested that these scaffolds can be used for bone and wound tissue engineering.  相似文献   

6.
Supplying sufficient oxygen within the scaffolds is one of the essential hindrances in tissue engineering that can be resolved by oxygen-generating biomaterials (OGBs). Two main issues related to OGBs are controlling oxygenation and reactive oxygen species (ROS). To address these concerns, we developed a composite scaffold entailing three layers (hydrogel-electrospun fibers-hydrogel) with antioxidant and antibacterial properties. The fibers, the middle layer, reinforced the composite structure, enhancing the mechanical strength from 4.27 ± 0.15 to 8.27 ± 0.25 kPa; also, this layer is made of calcium peroxide and silk fibroin (SF) through electrospinning, which enables oxygen delivery. The first and third layers are physical SF hydrogels to control oxygen release, containing quercetin (Q), a nonenzymatic antioxidant. This composite scaffold resulted in almost more than 40 mmHg of oxygen release for at least 13 days, and compared with similar studies is in a high range. Here, Q was used for the first time for an OGB to scavenge the possible ROS. Q delivery not only led to antioxidant activity but also stabilized oxygen release and enhanced cell viability. Based on the given results, this composite scaffold can be introduced as a safe and controllable oxygen supplier, which is promising for tissue engineering applications, particularly for bone.  相似文献   

7.
Hair waste is one of the solid substances rejected by the leather industry. This waste finds its way into the surroundings causing serious environmental pollution. This hair waste may be utilized for effective extraction of keratin, thereby generating value-added products with numerous applications. Thus we focusing on utilizing red sheep’s hair waste for extracting keratin by the application of different chemical treatments such as sodium hydroxide, sodium sulfide, mercaptoethanol, cysteine, sodium metabisulfite with urea (SMB), and SMB with SDS (SMBS). CD spectrum and FTIR results of the keratin samples indicated a predominance of the helical conformation along with β sheets. SDS-PAGE confirmed the molecular weight of the keratin samples to be in the range of 40–60 kDa. DSC and TGA analysis exhibited the extracted keratin to have a higher denaturation temperature (>200 °C) and thermal stability. The keratin samples obtained using varied chemical treatments were compared in terms of yield, protein content, and cost-effectiveness, and the sample obtained using SMBS was preferred for in vitro studies. It is indicated that keratin extracted using SMBS effectively involved for fibroblast cell growth. Thus, we suggest that these keratin could produce biomaterials that can serve as a valuable material for biomedical applications.  相似文献   

8.
Kuang  Wenzhong  Liu  Chen  Xu  Hongguang 《Cytotechnology》2021,73(3):447-456
Cytotechnology - Low back pain caused by intervertebral disc degeneration has become a global problem that seriously affects public health. The application of nucleus pulposus tissue engineering to...  相似文献   

9.
Bioprocess and Biosystems Engineering - The hazardous effects of current nanoparticle synthesis methods have steered researchers to focus on the development of newer environmentally friendly and...  相似文献   

10.
An alternative environmentally benign support was prepared from chitosan–chitin nanowhiskers (CS/CNWs) for covalent immobilization of Rhizomucor miehei lipase (RML) to increase the operational stability and recyclability of RML in synthesizing eugenyl benzoate. The CS/CNWs support and RML-CS/CNWs were characterized using X-ray diffraction, fluorescent microscopy, and Fourier transform infrared spectroscopy. Efficiency of the RML-CS/CNWs was compared to the free RML to synthesize eugenyl benzoate for parameters: reaction temperature, stirring rate, reusability, and thermal stability. Under optimal experimental conditions (50°C, 250?rpm, catalyst loading 3?mg/mL), a twofold increase in yield of eugenyl benzoate was observed for RML-CS/CNWs as compared to free RML, with the former achieving maximum yield of the ester at 62.1% after 5?hr. Results demonstrated that the strategy adopted to prepare RML-CS/CNWs was useful, producing an improved and prospectively greener biocatalyst that supported a sustainable process to prepare eugenyl benzoate. Moreover, RML-CS/CNWs are biodegradable and perform esterification reactions under ambient conditions as compared to the less eco-friendly conventional acid catalyst. This research provides a facile and promising approach for improving activity of RML in which the resultant RML-CS/CNWs demonstrated good operational stability for up to eight successive esterification cycles to synthesize eugenyl benzoate.  相似文献   

11.
Cardiac tissue engineering is an emerging approach for cardiac regeneration utilizing the inherent healing responses elicited by the surviving heart using biomaterial templates. In this study, we aimed to develop hydrogel scaffolds for cardiac tissue regeneration following myocardial infarction (MI). Two superabsorbent hydrogels, CAHA2A and CAHA2AP, were developed employing interpenetration chemistry. CAHA2A was constituted with alginate, carboxymethyl cellulose, (hydroxyethyl) methacrylate, and acrylic acid, where CAHA2AP was prepared by interpenetrated CAHA2A with polyvinyl alcohol. Both hydrogels displayed superior physiochemical characteristics, as determined by attenuated total reflection infrared spectroscopy spectral analysis, differential scanning calorimetry measurements, tensile testing, contact angle, water profiling, dye release, and conductivity. In vitro degradation of the hydrogels displayed acceptable weight composure and pH changes. Both hydrogels were hemocompatible, and biocompatible as evidenced by direct contact and MTT assays. The hydrogels promoted anterograde and retrograde migration as determined by the z-stack analysis using H9c2 cells grown with both gels. Additionally, the coculture of the hydrogels with swine epicardial adipose tissue cells and cardiac fibroblasts resulted in synchronous growth without any toxicity. Also, both hydrogels facilitated the production of extracellular matrix by the H9c2 cells. Overall, the findings support an appreciable in vitro performance of both hydrogels for cardiac tissue engineering applications.  相似文献   

12.

Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell–cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell–cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell–cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell–cell signaling to highlight their potential role in future CVTE strategies.

  相似文献   

13.
This paper described an ingenious approach for the fabrication of a promising biosensor, hemoglobin (Hb)/chitosan (Chit)–ionic liquid (IL)–ferrocene (Fc)/graphene (Gr)/glassy carbon electrode (GCE), that exploited the synergistic beneficial characteristics of Fc, Gr and IL for Hb. The proposed biosensor showed a strong electrocatalytic activity toward the reduction of H2O2, which could be attributed to the favored orientation of Hb in the well-confined surface as well as the high electrical conductivity of the resulting Chit–IL–Fc/Gr inorganic hybrid composite. The developed biosensor exhibited a fast amperometric response (2 s), a good linear response toward H2O2 over a wide range of concentration from 50 μM to 1200 μM, and a low detection limit of 3.8 μM. The apparent Michaelis–Menten constant (Km) of Hb on the composite medium was 0.16 mM, showing high bioelectrocatalytic activity of immobilized protein toward H2O2 reduction. High sensitivity and stability, technically simple and possibility of preparation at short period of time are of great advantages of the developed biosensors.  相似文献   

14.
15.
The aggregation of amyloid-β (Aβ) peptides is believed to be a major factor in the onset and progression of Alzheimer's disease. Molecules binding with high affinity and selectivity to Aβ-peptides are important tools for investigating the aggregation process. An Aβ-binding Affibody molecule, ZAβ3 , has earlier been selected by phage display and shown to bind Aβ(1-40) with nanomolar affinity and to inhibit Aβ-peptide aggregation. In this study, we create truncated functional versions of the ZAβ3 Affibody molecule better suited for chemical synthesis production. Engineered Affibody molecules of different length were produced by solid phase peptide synthesis and allowed to form covalently linked homodimers by S-S-bridges. The N-terminally truncated Affibody molecules ZAβ3 (12-58), ZAβ3 (15-58), and ZAβ3 (18-58) were produced in considerably higher synthetic yield than the corresponding full-length molecule ZAβ3 (1-58). Circular dichroism spectroscopy and surface plasmon resonance-based biosensor analysis showed that the shortest Affibody molecule, ZAβ3 (18-58), exhibited complete loss of binding to the Aβ(1-40)-peptide, while the ZAβ3 (12-58) and ZAβ3 (15-58) Affibody molecules both displayed approximately one order of magnitude higher binding affinity to the Aβ(1-40)-peptide compared to the full-length Affibody molecule. Nuclear magnetic resonance spectroscopy showed that the structure of Aβ(1-40) in complex with the truncated Affibody dimers is very similar to the previously published solution structure of the Aβ(1-40)-peptide in complex with the full-length ZAβ3 Affibody molecule. This indicates that the N-terminally truncated Affibody molecules ZAβ3 (12-58) and ZAβ3 (15-58) are highly promising for further engineering and future use as binding agents to monomeric Aβ(1-40).  相似文献   

16.
Permeability is a key parameter for microstructural design of scaffolds, since it is related to their capability for waste removal and nutrients/oxygen supply. In this framework, Darcy's experiments were carried out in order to determine the relationship between the pressure drop gradient and the fluid flow velocity in Bioglass®-based scaffolds to obtain the scaffold's permeability. Using deionised water as working fluid, the measured average permeability value on scaffolds of 90–95% porosity was 1.96×10?9 m2. This value lies in the published range of permeability values for trabecular bone.  相似文献   

17.

Metabolite profiling is commonly performed by GC–MS of methoximated trimethylsilyl derivatives. The popularity of this technique owes much to the robust, library searchable spectra produced by electron ionization (EI). However, due to extensive fragmentation, EI spectra of trimethylsilyl derivatives are commonly dominated by trimethylsilyl fragments (e.g. m/z 73 and 147) and higher m/z fragment ions with structural information are at low abundance. Consequently different metabolites can have similar EI spectra, and this presents problems for identification of “unknowns” and the detection and deconvolution of overlapping peaks. The aim of this work is to explore use of positive chemical ionization (CI) as an adjunct to EI for GC–MS metabolite profiling. Two reagent gases differing in proton affinity (CH4 and NH3) were used to analyse 111 metabolite standards and extracts from plant samples. NH3-CI mass spectra were simple and generally dominated by [MH]+ and/or the adduct [M+NH4]+. For the 111 metabolite standards, m/z 73 and 147 were less than 3% of basepeak in NH3-CI and less than 30% of basepeak in CH4-CI. With CH4-CI, [MH]+ was generally present but at lower relative abundance than for NH3-CI. CH4-CI spectra were commonly dominated by losses of CH4 [M+1-16]+, 1–3 TMSOH [M+1-nx90]+, and combinations of CH4 and TMSOH losses [M+1-nx90-16]+. CH4-CI and NH3-CI mass spectra are presented for 111 common metabolites, and CI is used with real samples to help identify overlapping peaks and aid identification via determination of the pseudomolecular ion with NH3-CI and structural information with CH4-CI.

  相似文献   

18.
Kröger M  Fels G 《Biodegradation》2007,18(4):413-425
Contamination of ground and surface water with 2,4,6-trinitrotoluene (TNT) and its biological and chemical transformation products are a persisting problem at former TNT production sites. We have investigated the photochemical degradation of TNT and its aminodinitro-(ADNT) and diaminonitrotoluene (DANT) metabolites using OH-radical generating systems like Fenton and hydrogen peroxide irradiated with UV, in order to compare the degradation and mineralization rate of ADNT- and DANT-isomers with TNT itself. As a result, we find that the aminoderivatives were mineralized much faster than TNT. Consequently, as ADNTs and DANTs are the known dead-end products of biological TNT degradations, we have combined our photochemical procedure with a preceding biological treatment of TNT by a mixed culture from sludge of a sewage plant. This consecutive degradation procedure, however, shows a reduced mineralization rate of the ADNTa and DANTs in the biologically derived supernatant as compared to the pure substances, suggesting that during the biological TNT treatment by sludge competing substrates are released into the solution, and that a more defined biological procedure would be necessary in order to achieve an effective, ecologically and economically acceptable mineralization of TNT from aqueous systems.  相似文献   

19.
Metabolite profiling is commonly performed by GC–MS of methoximated trimethylsilyl derivatives. The popularity of this technique owes much to the robust, library searchable spectra produced by electron ionization (EI). However, due to extensive fragmentation, EI spectra of trimethylsilyl derivatives are commonly dominated by trimethylsilyl fragments (e.g. m/z 73 and 147) and higher m/z fragment ions with structural information are at low abundance. Consequently different metabolites can have similar EI spectra, and this presents problems for identification of “unknowns” and the detection and deconvolution of overlapping peaks. The aim of this work is to explore use of positive chemical ionization (CI) as an adjunct to EI for GC–MS metabolite profiling. Two reagent gases differing in proton affinity (CH4 and NH3) were used to analyse 111 metabolite standards and extracts from plant samples. NH3-CI mass spectra were simple and generally dominated by [MH]+ and/or the adduct [M+NH4]+. For the 111 metabolite standards, m/z 73 and 147 were less than 3% of basepeak in NH3-CI and less than 30% of basepeak in CH4-CI. With CH4-CI, [MH]+ was generally present but at lower relative abundance than for NH3-CI. CH4-CI spectra were commonly dominated by losses of CH4 [M+1-16]+, 1–3 TMSOH [M+1-nx90]+, and combinations of CH4 and TMSOH losses [M+1-nx90-16]+. CH4-CI and NH3-CI mass spectra are presented for 111 common metabolites, and CI is used with real samples to help identify overlapping peaks and aid identification via determination of the pseudomolecular ion with NH3-CI and structural information with CH4-CI.  相似文献   

20.
Aldoxime–nitrile pathway is one of the important routes of carbon and nitrogen metabolism in many life forms and a key interface for plant–microbe interactions. This pathway starts with transformation of amino acids to aldoximes, which are converted to nitriles and the later are ultimately hydrolyzed to acids and ammonia. Understanding and engineering of the enzymes involved in this pathway viz. cytochrome P450/CYP79, aldoxime dehydratase, nitrilase, nitrile hydratase, amidase and hydroxynitrile lyase, presents unprecedented opportunities in biocatalysis and green chemistry. Co-expressing these enzymes in prokaryotic and eukaryotic microbial hosts and tailoring their properties i.e. activity, specificity, stability and enantioselectivity may lead to develop sustainable bioprocesses for the synthesis of industrially important nitriles, amides and acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号