首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crab chitosan was prepared by alkaline N-deacetylation of crab chitin for 60, 90 and 120 min and the yields were 30.0-32.2% with that of chitosan C120 being the highest. The degree of N-deacetylation of chitosans (83.3–93.3%) increased but the average molecular weight (483–526 kDa) decreased with the prolonged reaction time. Crab chitosans showed lower lightness and WI values than purified chitin, chitosans CC and CS but higher than crude chitin. With the prolonged reaction time, the nitrogen (8.9–9.5%), carbon (42.2–45.2%) and hydrogen contents (7.9–8.6%) in chitosans prepared consistently increased whereas N/C ratios remained the same (0.21). Crab chitosans prepared showed a melting endothermic peak at 152.3–159.2 °C. Three chitosans showed similar microfibrillar crystalline structure and two crystalline reflections at 2θ = 8.8–9.0° and 18.9–19.1°. Overall, the characteristics of three crab chitosans were unique and differed from those of chitosan CC and CS as evidenced by the element analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction patterns.  相似文献   

2.
Different crude microbial proteases were applied for chitin extraction from shrimp shells. A Box–Behnken design with three variables and three levels was applied in order to approach the prediction of optimal enzyme/substrate ratio, temperature and incubation time on the deproteinization degree with Bacillus mojavensis A21 crude protease. These optimal conditions were: an enzyme/substrate ratio of 7.75 U/mg, a temperature of 60 °C and an incubation time of 6 h allowing to predict 94 ± 4% deproteinization. Experimentally, in these optimized conditions, a deproteinization degree of 88 ± 5% was obtained in good agreement with the prediction and larger than values generally given in literature. The deproteinized shells were then demineralized to obtain chitin which was converted to chitosan by deacetylation and its antibacterial activity against different bacteria was investigated. Results showed that chitosan dissolved at 50 mg/ml markedly inhibited the growth of most Gram-negative and Gram-positive bacteria tested.  相似文献   

3.
The paper deals with the synthesis of organic–inorganic hybrid membranes, Hy, obtained by simultaneous grafting and crosslinking of chitosan with epoxy-terminated polydimethylsiloxane and γ-glycidoxypropyltrimethoxysilane. Porous membranes, HyP, were also obtained by acid decomposition, at different temperatures (25 and 50 °C), of calcium carbonate porogenic agent trapped inside the material. As proved by electron and atomic force microscopy, the non-porous membrane is a phase segregated material with spherical domains (10–40 μm) of silica core covered by hydrophobic siloxane in a hydrophilic chitosan matrix. The porous membranes showed different morphologies with irregular circular pores of 10–30 μm diameters for the membranes obtained at lower temperature, while the membranes prepared at 50 °C tend to adopt a plan-parallel porosity. The water contact angles of hybrid membranes (78°) and pure chitosan membranes (72°) indicated a lower hydrophilic character of modified chitosan. As a result of the crosslinking and of increased hydrophobicity, the hybrid membranes were characterized by a smaller water swelling degree (about 30%) as compared to pure chitosan membrane (700%). However, the presence of the pores in HyP membranes determined an increase of the water adsorption (maximum swelling degree, about 100%). The hybrid membranes possess a slightly higher thermal stability as compared to chitosan (first initial decomposition temperature, 147 and 175 °C for chitosan and hybrid membranes, respectively), but a lower one as compared to pure polydimethylsiloxane. The high storage modulus of chitosan (about 5.1 × 109 Pa at 20 °C) is decreased by about one order of magnitude by the introduction of the highly flexible polysiloxane and the hybrid membranes are more flexible.  相似文献   

4.
Crude glycerol from the biodiesel industry was used as carbon source for high cell density fed-batch cultivation of Pichia pastoris aiming at producing a chitin–glucan complex (CGC). More than 100 g L?1 biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g g?1 during the batch phase and 0.63 g g?1 during the fed-batch phase. The chitin–glucan complex was recovered from the yeast cell wall by hot alkaline extraction. CGC content in the cell wall was found to be relatively constant throughout the cultivation (18–26%) with a volumetric productivity of 1.28 g L?1 h?1 at the end of the fed-batch phase. The molar ratio of chitin:β-glucan in the extracted biopolymer was 16:84, close to other CGC extracted from Aspergillus biomass. The extracted polymer was characterized by Differential Scanning Calorimetry (DCS) and solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and compared with commercial biopolymers, namely, crab shell chitin and/or chitosan, algal β-glucan (laminarin) and fungal chitin–glucan complex (kiOsmetine).  相似文献   

5.
Chitin and chitosan microparticles (MPs) are important immune system stimulators. The aim of this study was to evaluate the protective effects of these compounds in comparison with each other against Leishmania infection in BALB/c mice infected with Leishmania major (L. major).Female BALB/c mice were injected subcutaneously with 2 × 105 promastigotes. Chitin and/or chitosan MPs (< 40 μm) were subcutaneously injected in the BALB/c mice with two-day intervals until two weeks. Mice in all groups were sacrificed at 12 weeks post-infection. Enumeration of viable parasites was performed using limiting dilution assay. Furthermore, the animals (5 mice/group) were sacrificed two weeks post-infection. The lymph node cells were isolated and the effects of the chitinous MPs on the proliferation and production of cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) were determined. The mean sizes of lesions were significantly smaller in chitin (0.6 ± 0.12 mm) and chitosan treated groups (1.2 ± 0.8 mm) than in the control group (6.2 ± 1.7 mm) (P < 0.05). The parasite load in the lymph nodes of the treated mice was significantly lower than that in the lymph nodes of controls (1.31 × 106 vs 8.24 × 107 parasite/lymph node [P = 0.032] and 7.49 × 106 vs 8.24 × 107 parasite/lymph node [P = 0.05] for chitin and chitosan MPs treatment, respectively). We found that chitinous MPs induced cell proliferation and that chitin but not chitosan increased TNF-α and IL-10 production. Chitin appears that it has more effect than chitosan against leishmaniasis. The current study revealed that chitinous MPs had significant activity against L. major and could be considered as new therapeutic modality in leishmaniasis.  相似文献   

6.
Substituted polyaniline/chitosan(PANIs/Ch) composites were chemically synthesized by using ammonium peroxydisulfate as oxidant and characterized by measurements of conductivity, FTIR, UV–vis, SEM and TGA techniques. FTIR spectra of the composites revealed that there is a strong interaction between substituted polyanilines and chitosan. Among the substituted polyaniline/chitosan composites synthesized, poly(N-ethylaniline)/chitosan PNEANI/Ch has the highest conductivity with a value of 1.68 × 10?4 S/cm. The P2EANI/Ch composite exhibited higher thermal stability than the other composites. SEM images of the composites showed an agglomerated granular morphology of substituted polyaniline particles coated on the surface of chitosan.  相似文献   

7.
A highly chitinolytic strain Penicillium ochrochloron MTCC 517 was procured from MTCC, Chandigarh, India. Culture medium supplemented with 1% chitin was found to be suitable for maximum production of chitinase. Purification of extracellular chitinase was done from the culture medium by organic solvent precipitation and DEAE-cellulose column chromatography. The chitinase was purified 6.92-fold with 29.9% yield. Molecular mass of purified chitinase was found to be 64 kDa by SDS-PAGE. The chitinase showed optimum temperature 40 °C and pH 7.0. The enzyme activity was completely inhibited by Hg2+, Zn2+, K+ and NH4+. The enzyme kinetic study of purified chitinase revealed the following characteristics, such as apparent Km 1.3 mg ml?1, Vmax 5.523 × 10?5 moles l?1 min?1 and Kcat 2.37 s?1 and catalytic efficiency 1.82 s?1 M?1. The enzyme hydrolyzed colloidal chitin, glycol chitin, chitosan, glycol chitosan, N,N′-diacetylchitobiose, p-nitrophenyl N-acetyl-β-d-glucosaminide and 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. The chitinase of P. ochrochloron MTCC 517 is an exoenzyme, which gives N-acetylglucosamine as the main hydrolyzate after hydrolysis of colloidal chitin. Protoplasts with high regeneration capacity were obtained from Aspergillus niger using chitinase from P. ochrochloron MTCC 517. Since it also showed antifungal activity, P. ochrochloron MTCC 517 seems to be a promising biocontrol agent.  相似文献   

8.
In this study, chitosan was used as a flocculant to harvest freshwater microalgae Chlorella vulgaris. The recovery efficiency of C. vulgaris was tested at various chitosan concentrations. 120 mg/L of chitosan showed the highest efficiency (92 ± 0.4%) within 3 min. The maximum concentration factor of 10 was also achieved at this dose of chitosan. The harvesting efficiency was pH dependent. pH 6.0 showed the highest harvesting efficiency (99 ± 0.5%). Measurement of zeta-potential confirmed that the flocculation was induced by charge neutralization. This study showed that a biopolymer, chitosan, can be a promising flocculant due to its high efficacy, low dose requirements, and short settling time.  相似文献   

9.
Chitin based polyurethane (PU) elastomers constituted on 4,4´-diphenylmethane diisocyanate (MDI), poly(ε-caprolactone) (PCL) and extended with blends of chitin/1,4-butane diol were synthesized via two step polymerization technique. The synthesized samples were irradiated for 50, 100 and 200 h in an UV exposure chamber as such the spectral distribution of the light is good match for terrestrial solar radiation. The crystalline behavior of the irradiated PU samples were investigated by X-ray diffraction (XRD), differential scanning calorimetery (DSC) and dynamic mechanical thermal analysis (DMTA) techniques. The effect of irradiation time and chitin contents on crystallinity were studied and investigated. The maximum decrease in the crystalline behavior of samples after irradiation observed by XRD, DSC and tan δ peaks were found for the PU samples extended with lower contents of chitin (chitin/BDO; 0/100). In comparison with irradiation times the 200 h irradiation showed maximum change in the crystalline behavior.  相似文献   

10.
AimsGlucosamine has been used safely to relieve osteoarthritis in humans, but the precise mechanism underlying its efficacy is still unclear. In this study, we investigated the direct effects of glucosamine and related compounds on mast cell mediated inflammation using cultured mast cells and an animal model.Main methodsDinitrophenyl (DNP)-IgE-sensitized rat basophilic leukemia RBL-2H3 cells were treated with glucosamine-HCl (GlcN-HCl), N-acetylglucosamine (GlcNAc), chitin oligomer or chitosan oligomer. Cells were stimulated by DNP-BSA to induce degranulation and released β-hexosaminedase was determined colorimetrically to measure the degree of degranulation. Dinitrofluorobenzene (DNFB) sensitized BALB/c mice were administrated orally with 1 or 0.1 mg GlcN-HCl or GlcNAc for 6 days. One hour after the final administration, mice were challenged by DNFB to induce ear swelling.Key findingsGlcN-HCl significantly inhibited the antigen-induced degranulation of RBL-2H3 cells at higher than 0.01 mg/mL for 24 h-treatment while GlcNAc, a chitin oligomer and a chitosan oligomer had no effect. GlcN-HCl also suppressed intracellular calcium mobilization. GlcN-HCl and GlcNAc significantly suppressed the antigen-induced up-regulation of TNF-α and IL-6 mRNA. Ear swelling and histamine levels of plasma and ear in DNFB-treated mice were significantly suppressed by oral administration of GlcN-HCl or GlcNAc (0.1 and 1 mg) for 6 days.SignificanceOur results strongly suggest that GlcN-HCl and GlcNAc have anti-inflammatory effects in vivo by suppressing the activation of mast cells.  相似文献   

11.
Crustacean waste is one of the most severe issues, posing significant environmental and health risks. This study aims to improve managing marine waste by isolating chitosan from Procambarus clarkii by devising a new methodology, incorporating technical steps, e.g., washing, decolorization and deacetylation under a reflexive condenser and dialysis purification. A comparison was made between the prepared P. clarkii chitosan and four types of shrimp chitosans: commercial, high, low, and nano. The obtained chitosan has a low molecular weight and viscosity compared to the commercial shrimp chitosan used in various applications. P. clarkii chitosan was prepared in high quality from a cheap source, as its color and quality were better than those of the commercial shrimp chitosan. The new methodology has successfully extracted chitosan from P. clarkii in a good quality and high purity, achieving 89% deacetylation, high solubility, high purity, and medium molecular weight. Analysis of the different chitosan samples with Fourier transform infrared spectroscopy (FTIR), atomic force microscopy, Raman spectrum referred indicated high similarity between the chitosan different types, regardless of its source. The 3D image of P. clarkii showed the distance between the highest and most profound points of extracted chitosan is 728.94 nm, revealing homogeneous, smooth surfaces, apparently free of pores and cracks. FTIR and Raman spectrum of P. clarkii indicated various functional groups, e.g., alcohol, amines, amides, and phenols. These active groups are responsible for about 60% of the antioxidant activity of that product. Evaluating the quality traits indicated the excellence of the chitosan prepared from P. clarkii, especially in color, viscosity, and antioxidant activity, nominating it for different food applications.  相似文献   

12.
Fusarium culmorum can cause Fusarium head blight (FHB) disease of cereals, resulting in yield loss and contamination of grain with the trichothecene mycotoxin, deoxynivalenol (DON). In this study, we compared the efficacy of a biological control agent (Pseudomonas fluorescens strain MKB 158) with the biochemical chitosan (the deacetylated derivative of chitin) in controlling FHB disease of wheat and barley. Both agents were equally effective in reducing DON contamination of grain caused by F. culmorum. Under both glasshouse and field conditions, treatment with commercially available crabshell-derived chitosan reduced the severity of FHB symptom development on wheat and barley by ?74% (P ? 0.050). While treatment with P. fluorescens reduced the severity of FHB symptom development on these cereals by ?48% (P ? 0.050). Chitosan and P. fluorescens respectively prevented ?58 and ?35% of the FHB-associated reductions in 1000-grain weight in wheat and barley (P ? 0.050). Both agents significantly reduced the DON content of wheat and barley under both glasshouse and field conditions (P ? 0.050) and were equally efficacious in doing so (?74 and ?79% reductions due to chitosan and P. fluorescens, respectively). Crude chitin extracts from crabshells and crude chitosan-based formulations prepared from crabshells and eggshells were also tested under field conditions, but were not as effective as the commercial crabshell-derived preparation in controlling FHB disease. This is the first report on the use of chitosan for the control of Fusarium head blight disease and DON contamination of grain.  相似文献   

13.
The psychrotrophic Sanguibacter antarcticus KOPRI 21702T, isolated from Antarctic seawater, produced a cold-adapted chitinolytic enzyme that is a new 55 kDa family 18 chitinase (Chi21702). Chi21702 exhibited high activities toward pNP-(GlcNAc)2 and pNP-(GlcNAc)3 with no activity for pNP-GlcNAc, indicating that it prefers chitin chains longer than dimers, just as endochitinases do. A mixture of GlcNAc and GlcNAc2 was produced as a main product by Chi21702 activity from chitin oligosaccharides and swollen chitin, while less GlcNAc3 was produced. These results show that Chi21702 has an endochitinase activity, randomly hydrolyzing chitin at internal sites. Chi21702 displayed chitinase activity at 0–40 °C (optimal temperature of 37 °C), maintained its activity at pH 4–11 (optimal pH of 7.6). Interestingly, Chi21702 exhibited relative activities of 40% and 60% at 0 and 10 °C, respectively, in comparison to 100% at 37 °C, which is higher than those of the previously characterized, cold-adapted, chitinases from bacterial strains.  相似文献   

14.
Chitin, which is a polymer of β-(1–4) linked N-acetyl-d-glucosamine (GlcNAc) residues, is one of the most abundant renewable resources in nature, after cellulose. In this study, we found some native Mucor strains, which can use GlcNAc and chitin substrates as carbon sources for growth and ethanol production. One of these strains, M. circinelloides NBRC 6746 produced 18.6 ± 0.6 g/l of ethanol from 50 g/l of GlcNAc after 72 h and the maximum ethanol production rate was 0.75 ± 0.1 g/l/h. Furthermore, M. circinelloides NBRC 4572 produced 6.00 ± 0.22 and 0.46 ± 0.04 g/l of ethanol from 50 g/l of colloidal chitin and chitin powder after 16 and 12 days, respectively. We also found an extracellular chitinolytic enzyme producing strain M. ambiguus NBRC 8092, and successfully improved ethanol productivity of NBRC 4572 from colloidal chitin using crude chitinolytic enzyme derived from NBRC 8092. The ethanol titer reached 9.44 ± 0.10 g/l after 16 days. These results were the first bioethanol production from GlcNAc and chitin substrates by native organisms, and also suggest that these Mucor strains have great potential for the simultaneous saccharification and fermentation (SSF) of chitin biomass.  相似文献   

15.
This research reports the fabrication of silver nanoparticles (AgNPs) from endophytic fungus, Amesia atrobrunnea isolated from Ziziphus spina-christi (L.). Influencing factors for instance, thermal degree of incubation, media, pH, and silver nitrate (AgNO3) molarity were optimized. Then, the AgNPs were encapsulated with chitosan (Ch-AgNPs) under microwave heating at 650 W for 90 s. Characterization of nanoparticles was performed via UV–visible (UV–vis) spectrophotometer, Fourier-transform infrared spectrophotometer (FTIR), zeta potential using dynamic-light scattering (DLS), and field-emission-scanning electron microscope (FE-SEM). Anti-fungal activity of Ch-AgNPs at (50, 25, 12.5, 6.25 mg/L) was tested against Fusarium oxysporum, Curvularia lunata, and Aspergillus niger using the mycelial growth inhibition method (MGI). Results indicated that Czapek-dox broth (CDB) with 1 mM AgNO3, an acidic pH, and a temperature of 25–30 °C were the optimum for AgNPs synthesis. (UV–vis) showed the highest peak at 435 nm, whereas Ch-AgNPs showed one peak for AgNPs at 405 nm and another peak for chitosan at 230 nm. FTIR analysis confirmed that the capping agent chitosan was successfully incorporated and interacted with the AgNPs through amide functionalities. Z-potential was −19.7 mV for AgNPs and 38.9 mV for Ch-AgNPs, which confirmed the significant stability enhancement after capping. FES-SEM showed spherical AgNPs and a reduction in the nanoparticle size to 44.65 nm after capping with chitosan. The highest mycelial growth reduction using fabricated Ch-AgNPs was 93% for C. lunata followed by 77% for A. niger and 66% F. oxysporum at (50 mg/L). Biosynthesis of AgNPs using A. atrobrunnea cell-free extract was successful. Capping with chitosan exhibited antifungal activity against fungal pathogens.  相似文献   

16.
The polyelectrolyte complex (PEC) effect between hyaluronic acid (HA) and chitosan was explored to recover HA from fermentation broth. Chitosan was conjugated with the magnetic nanoparticles by co-precipitation method to facilitate its recovery. The magnetic chitosan particles (chitosan–magnetite) have an average size about 5 μm and point of zero charge (PZC) around 6.5. pH lower than PZC favored the HA capture. About 39 mg of HA was captured per gram of particles at pH 6. Nearly quantitative release of captured HA was achieved at pH 8. Although HA could not be directly isolated from Streptococcus zoopedemics fermentation broth by manipulating pH between 6 and 8, HA free of contaminant protein could be purified from the crude ethanol precipitate using chitosan–magnetite.  相似文献   

17.
In this study raw starch digesting amylase (RSDA) from Aspergillus carbonarius (Bainier) Thom IMI 366159 was stabilized by covalent binding on polyglutaraldehyde (PG), glutaraldehyde (G) activated chitosan beads or post immobilization cross linking of enzyme adsorbed on chitosan. Presence of Ca2+ ions (0.5–1.5 mM) activated the PG and G derivatives but repressed the crosslinked enzyme. Optimum pH for cross linked derivative increased by 2 units but was unaltered for PG and G derivatives. Immobilized amylase exhibited improved thermal and storage stability. Immobilized derivatives had no loss of activity after 1 month storage and retained above 90% activity after 10 batch reactions of 60 min each. Immobilization successfully stabilized RSDA and immobilized enzyme from A. carbonarius can be applied in numerous industries for cheap, cost effective and environmentally friendly starch hydrolytic processes to simple sugars.  相似文献   

18.
The synthesis of chitosan (Chs) and chitin (Chi) copolymer and grafting of acrylamide (AAm) onto the synthesized copolymer have been carried out by chemical methods. The grafted copolymer was characterized by FTIR, SEM and XRD. The extracellular cutinase of Aspergillus sp. RL2Ct (E.C. 3.1.1.3) was purified to 4.46 fold with 16.1% yield using acetone precipitation and DEAE sepharose ion exchange chromatography. It was immobilized by adsorption on the grafted copolymer. The immobilized enzyme was found to be more stable then the free enzyme and has a good binding efficiency (78.8%) with the grafted copolymer. The kinetic parameters KM and Vmax for free and immobilized cutinase were found to be 0.55 mM and 1410 μmol min−1 mg−1 protein, 2.99 mM and 996 μmol min−1 mg−1 protein, respectively. The immobilized cutinase was recycled 64 times without considerable loss of activity. The matrix (Chs-co-Chi-g-poly(AAm)) prepared and cutinase immobilized on the matrix have potential applications in enzyme immobilization and organic synthesis respectively.  相似文献   

19.
Shrimp head waste is a major byproduct of crustacean processing in North-eastern Brazil and represents an interesting source of bioactive molecules. Additionally, its use increases the sustainability of processing fishery products. The present study reports a process developed for recovering bioactive molecules from shrimp heads through autolysis. A protein hydrolysate (120 ± 0.4 g) formed by a 9% (w/v) solution was recovered and lyophilized from 1 kg of shrimp heads. Approximately 195 ± 0.5 mg of carotenoids was recovered as an ethanolic extract. The recovery of chitin and chitosan were 25 ± 2 g kg?1 and 17 ± 4 g kg?1 wet processing waste, respectively. Chitosans were characterized by 13C NMR, and FT-IR analysis and exhibited a variable degree of deacetylation (60–80%). Sulfated glycosaminoglycans that exhibited electrophoretic migration similar to mammalian standards were also recovered (79 ± 2 mg kg?1 wet processing waste), and their degradation products suggested the presence of C6-sulfated heparan sulfate. These data point to the feasibility of an integrated process for isolating highly bioactive molecules, such as sulfated- and amino-polysaccharides, with a broad spectrum of applications from shrimp processing waste.  相似文献   

20.
Long-term separation of a host from its native parasitoids may result in divergent thermal adaptation between host and parasitoid. The olive fruit fly, Bactrocera oleae (Rossi), most likely originated from Sub-Saharan Africa, but has since had a long invasion history in cultivated olives that spans geographical barriers and continents. This study compared three major thermal performance profiles (development, survival, and reproduction) across a wide range of temperatures (10–34 °C) among a Californian population of the olive fruit fly and two African parasitoids, Psyttalia lounsburyi (Silvestri) and Psyttalia humilis (Silvestri), believed to have co-adapted with the fruit fly in its native range. Temperature ranges for the development and survival were 10–30 °C for the fly, 10–28 °C for P. lounsburyi, and 14–32 °C for P. humilis. There was no difference in any thermal performance measured between two P. humilis populations (Kenya and Namibia) tested. The most suitable temperature ranges for reproduction were 22–30 °C for the fly, 18–32 °C for P. humilis, and 18–26 °C for P. lounsburyi. The results showed slight differences in the thermal profiles among olive fruit fly and both parasitoids species, with P. humilis being more heat tolerant whereas P. lounsburyi was less heat tolerant than the fruit fly. The results are discussed with respect to thermal co-adaptation and classical biological control of the olive fruit fly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号