首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier-transform infrared (FTIR) spectroscopy was carried out on single colonies of Pediastrum duplex present in air-dried preparations of mixed phytoplankton samples isolated from a eutrophic freshwater lake. FTIR absorption spectra had 12 distinct bands over the wavenumber range 3300–900?cm?1 which were tentatively assigned to a range of chemical groups, including –OH (residual water, wavenumber 3299?cm?1), –CH2 (lipid, 2924), –C=O (cellulose, 1739), amide (protein, 1650 and 1542), >P=O (nucleic acid, 1077) and –C–O (starch, 1151 and 1077). Measurement of band areas identified residual water, protein and starch as the major detectable constituents. Areas of single bands and combined bands of –CH2, –C–O and >P=O species normalized to protein (to correct for differences in specimen hydration and thickness) showed wide variation between colonies, indicating environmental heterogeneity. Correlation analysis demonstrated close statistical associations between different molecular species. Particularly high levels of correlation between bands 3/4 (CH2), 6/7 (amide) and 8/9 (–CH3) was consistent with their joint origin from the same molecular species. The isolation of bands 11 and 12 in the correlation pattern was confirmed by factor analysis, suggesting that variation in the level of starch is statistically unrelated to other macromolecules being monitored. The use of FTIR spectroscopy to characterize an algal micro-population within mixed phytoplankton has potential for future studies on biodiversity and environmental interactions at the species level.  相似文献   

2.
Ways to simulate the making of clear noodles from mung bran starch were investigated by studying the molecular structures of mung bean and tapioca starches. Scanning electron micrographs showed that tapioca starch granules were smaller than those of mung bean starch. X-ray diffraction patterns of mung bean and tapioca starch were A- and CA-patterns, respectively. Iodine affinity studies indicated that mung bean starch contained 37% of apparent amylose and tapioca starch contained 24%. Gel permeation chromatograms showed that mung bean amylopectin had longer peak chain-length of long-branch chains (DP 40) than that of tapioca starch (DP 35) but shorter peak chain-length of short-branch chains (DP 16) than that of tapioca starch (DP 21). P-31 n.m.r. spectroscopy showed that both starches contained phosphate monoesters, but only mung bean starch contained phospholipids. Physical properties, including pasting viscosity, gel strength, and thermal properties (gelatinization), were determined. The results of the molecular structure study and physical properties were used to develop acceptable products using mixtures of cross-linked tapioca and high-amylose maize starches. Tapioca starch was cross-linked by sodium trimetaphosphate (STMP) with various reaction times, pH values, and temperatures. The correlation between those parameters and the pasting viscosity were studied using a visco/amylograph. Starches, cross-linked with 0.1% STMP, pH 11.0, 3.5 h reaction time at 25, 35, and 45°C (reaction temperature), were used for making noodles. High-amylose maize starch (70% amylose) was mixed at varying ratios (9, 13, 17, 28, 37, and 44%) with the cross-linked tapioca starches. Analysis of the noodles included: tensile strength, water absorption, and soluble loss. Noodle sensory properties were evaluated using trained panelists. Noodles made from a mixture of cross-linked tapioca starch and 17% of a high-amylose starch were comparable to the clear noodles made from mung bean starch.  相似文献   

3.
Noncovalent interactions (NCIs) between carbon monoxide and substituted benzene were investigated at the M06-2X/6-311++G(d,p) level. rThe results of interaction energy analysis indicated different effects for the electron-donating (–NH2, –OH, –CH3) and electron-withdrawing (–F, –CN, –NO2) groups on the CO?PhX complex. Atoms in molecules analysis confirmed the NCIs between CO and PhX. NCI analysis revealed that these interactions belong to van der Waals interactions. The electron density shift of the complexes was investigated with electron density difference analysis. Ternary CO?PhX?Bz complexes were designed to study the interplay between CO?π and π?π stacking interactions.  相似文献   

4.
The present study evaluates the usefulness of tapioca starch as additional carbon source for the growth of Monascus purpureus in soybean-soaking wastewater (SSW). The result revealed that M. purpureus grown on 2.0% (w/v) tapioca starch in SSW produced significantly (P < 0.05) higher amounts of biomass and production of the pigments (OD400 and OD500) when compared to those grown on glucose-or maltose-containing media. However, the glucoamylase activity of M. purpureus grown on the tapioca-SSW medium was not significantly increased when compared to those from the glucose-containing medium.  相似文献   

5.
To compare the OH-initiated reaction mechanisms of five chlorophenoxy herbicides, density functional theory (DFT) calculations of reactions in which ·OH attacks one of three active positions on each herbicide were carried out at the MPWB1K/6-311 + G(3df,2p)//MPWB1K/6-31 + G(d,p) level. For each herbicide, the calculation results show that ·OH addition to the C1 atom, which is the nexus between the benzene ring and the side group, possesses the lowest energy barrier among the three kinds of reactions, indicating that ·OH addition–substitution of the side chain is the most energetically and kinetically favorable reaction mechanism. Comparisons among the herbicides show that the mechanisms are affected by the steric hindrance and the electronegativities of the –CH3 and –Cl groups. When comparing the addition of ·OH to the C1 site among the five herbicides, the activation energy for the reaction of ·OH with DCPP reaction is the lowest (3.61 kcal mol?1), while that for the ·OH and 4-CPA reaction was the highest (5.91 kcal mol?1). ·OH addition to the C4 site presents the highest energy barriers among the three kinds of reactions, indicating that the para Cl is difficult to break down. When comparing the H-atom abstraction reactions of the five herbicides, the H atoms in the –CH2– group of 2,4-D are the easiest for ·OH to abstract, whereas those of DCPP and MCPP are more difficult to abstract, due to the steric hindrance of the –CH3 group. Additionally, the results obtained from the PCM calculations reveal that most of the reactions occur more easily in water than in gas, though the mechanisms involved are the same as those discussed above.  相似文献   

6.
大量研究表明施用甲醇能够促进多种植物的生长,在甲醇刺激植物生长的机理中,支持碳源假说的证据最多。该研究通过考察矮牵牛甲醇代谢与甲醇刺激其生长的相关性,对碳源假说进行验证。结果表明:(1)在MS固体培养基上添加2和6mmol/L CH3OH均可促进矮牵牛的生长和叶绿素含量增加,但2mmol/L CH3OH(低浓度)效果好于6mmol/L(高浓度),而且添加6mmol/L CH3OH会诱发较强的氧化胁迫。(2)进一步用13 C-NMR分析矮牵牛对不同浓度13 CH3OH的代谢作用发现,6mmol/L 13 CH3OH处理矮牵牛中[U-13 C]Fruc和[U-13 C]Gluc的生成量显著大于2mmol/L 13 CH3OH处理,即来自甲醇的碳源在代谢过程中虽被卡尔文循环同化为糖类物质,但这部分碳源对甲醇刺激矮牵牛的生长贡献不大。这些证据表明CH3OH代谢与其刺激矮牵牛生长的效果没有关联性,该实验结果不支持碳源假说。  相似文献   

7.
Ethanol and water are the solvents most commonly used to extract flavonoids from propolis. Do hydrogen-bonding interactions exist between flavonoids and ethanol/water? In this work, this question was addressed by using density functional theory (DFT) to provide information on the hydrogen-bonding interactions between flavonoids and ethanol/water. Chrysin and Galangin were chosen as the representative flavonoids. The investigated complexes included chrysin–H2O, chrysin–CH3CH2OH, galangin–H2O and galangin–CH3CH2OH dyads. Molecular geometries, hydrogen-bond binding energies, charges of monomers and dyads, and topological analysis were studied at the B3LYP/M062X level of theory with the 6?31++G(d,p) basis set. The main conclusions were: (1) nine and ten optimized hydrogen-bond geometries were obtained for chrysin–H2O/CH3CH2OH and galangin–H2O/CH3CH2OH complexes, respectively. (2) The hydrogen atoms except aromatic H1 and H5 and all of the oxygen atoms can form hydrogen-bonds with H2O and CH3CH2OH. Ethanol and water form strong hydrogen-bonds with the hydroxyl, carbonyl and ether groups in chrysin/galangin and form weak hydrogen-bonds with aromatic hydrogen atoms. Except in structures labeled A and B, chrysin and galangin interact more strongly with H2O than CH3CH2OH. (3) When chrysin and galangin form hydrogen-bonds with H2O and CH3CH2OH, charge transfers from the hydrogen-bond acceptor (H2O and CH3CH2OH in structures A, B, G, H, I, J) to the hydrogen-bond donor (chrysin and galangin in structure A, B, G, H, I, J). The stronger hydrogen-bond makes the hydrogen-bond donor lose more charge (A> B> G> H> I> J). (4) Most of the hydrogen-bonds in chrysin/galangin?H2O/CH3CH2OH complexes may be considered as electrostatic dominant, while C?O2···H in structures labeled E and C?O5···H in structures labeled J are hydrogen-bonds combined of electrostatic and covalent characters. H9, H7, and O4 are the preferred hydrogen-bonding sites.  相似文献   

8.
The rapid, transient rise in the intracellular concentration of cyclic AMP which follows addition of L-epinephrine to isolated fat cells is completely prevented by an ATP analog, α,β-methylene-adenosine-5′-triphosphate [Ap(CH2)pp], a competitive inhibitor of adenylate cyclase activity in liver and fat cell membrane preparations. The concentration of cyclic AMP falls distinctly below that in the basal state after incubating fat cells for seven minutes in the presence of Ap(CH2)pp. The results are consistent with the view that the ATP analog is also an effective in vivo inhibitor of adenylate cyclase activity, and that intracellular cyclic AMP levels are normally delicately balanced by very rapid processes of synthesis and degradation. Epinephrine-induced lipolysis in fat cells is not inhibited but is instead enhanced by Ap(CH2)pp. This is probably explained by the ability of the analog to act (like ATP) as a high-energy phosphate donor, an effect which is independent of its inhibition of adenylate cyclase activity. The predominant effect of this compound on glucose oxidation by fat cells also appears to be the result of this property since its effects are mimicked by ATP.  相似文献   

9.
Factors affecting microbial aerobic biodegradation of 6:2 fluorotelomer alcohol [6:2 FTOH, F(CF2)6CH2CH2OH] were investigated using three alkane-degrading bacteria (Mycobacterium vaccae JOB5, Pseudomonas oleovorans, and Pseudomonas butanovora) and one fluoroacetate-degrading bacterium (Pseudomonas fluorescens DSM 8341). In the presence of formate (an external reducing energy source), P. fluorescens DSM 8341 produced perfluorobutanoic acid by removing three –CF2– groups from 6:2 FTOH. Only P. fluorescens DSM 8341 transformed 5:3 acid to 4:3 acid and perfluoropentanoic acid. However, formate showed no effects on the degradation rates, patterns, or transformation products of 6:2 FTOH by M. vaccae JOB5. When dicyclopropylketone (an alkane hydroxylase inducer) or formate was added, P. oleovorans rapidly degraded 6:2 FTOH and produced PFPeA. In the presence of lactate, P. butanovora degraded 6:2 FTOH slowly but produced diverse metabolites. Our results demonstrate that the extent and mechanisms of 6:2 FTOH biotransformation are affected by strain types, enzyme inducers, and levels of reducing energy.  相似文献   

10.
The selectivity of phosphoryl P(O)R3, sulfoxide S(O)R2, and carbonyl C(O)R2 (R?=?NH2, CH3, OH, and F) derivatives with lanthanide cations (La3+, Eu3+, Lu3+) was studied by density functional theory calculations. Theoretical approaches were also used to investigate energy and the nature of metal–ligand interaction in the model complexes. Atoms in molecules and natural bond orbital (NBO) analyses were accomplished to understand the electronic structure of ligands, L, and the related complexes, L–Ln3+. NBO analysis demonstrated that the negative charge on phosphoryl, carbonyl, and sulfoxide oxygen (OP, OC, and OS) has maximum and minimum values when the connected –R groups are –NH2 and –F. The metal–ligand distance declines as, –F?>?–OH?>?–CH3?>?–NH2. Charge density at the bond critical point and on the lanthanide cation in the L–Ln3+ complexes varies in the order –F?<?–OH?<?–CH3?<?–NH2, due to greater ligand to metal charge transfer, which is well explained by energy decomposition analysis. It was also illustrated that E(2) values of Lp(N)?→?σ*(Y–N) vary in the order P=O ? S=O ? C=O and the related values of Lp(N)?→?σ*(Y=O) change as C=O ? S=O ? P=O in (NH2)nYO ligands (Y?=?P, C, and S). Trends in the L–Ln3+ CP–corrected bond energies are in good accordance with the optimized OY?Ln distances. It seems that, comparing the three types of ligands studied, NH2–substituted are the better coordination ligands.
Graphical Abstract Density functional theory (B3LYP) calculations were used to compare structural, electronic and energy aspects of lanthanide (La, Eu, Lu) complexes of phosphine derivatives with those of carbonyls and sulfoxides in which the R– groups connected to the P=O, C=O and S=O are –NH2, –CH3, –OH and –F.
  相似文献   

11.
The metabolic pathways in photosynthesis are modelled as an interconnected series of chemical reactions representing the electron transfer system, the carbon reduction cycle and starch and sucrose synthesis according to the model of Laisk and Walker [Proc R Soc Lond 227, 281–302 (1986)]. The model is formulated as a set of non-linear differential equations using mass-action kinetics, and stimulated for transient behaviour using an interactive simulation language. The model responses to switched light demonstrate the existence of oscillatory behaviour, similar to that found experimentally in O2 evolution and chlorophyll fluorescence, and explain known transient behaviour. The model is also used to investigate the source of oscillatory behaviour in the phosphate translocator, and other transient phenomena associated with the cyclic electron transfer system.Abbreviations PQ plastoquinone - PQH2 plastoquinol - PCred reduced plastocyanin - PCox oxidised plastocyanin - Pi ortho (inorganic) phosphate in chloroplasts - Pio inorganic orthophosphate in cytosol - TP triose phosphate - Ru5P ribulose-5-phosphate - RuBP ribulose bisphosphate - PGA phosphoglyceric acid - HP hexose phosphate - HPo hexose phosphate-total sugar phosphate in cytoplasm - S starch - SU sucrose  相似文献   

12.
The crucial step in the preparation of the title arsonolipids starting from the dichloromethane-soluble dithioarsonite CH2(OH)CH(OH)CH2–As(SPh)2 is to avoid an internal cyclization during the acylation which protects the primary –OH group from being acylated. This was to a large extent accomplished by using fatty acyl chloride in the presence of the weak base pyridine and controlling the temperature and rate of the acyl chloride addition, giving ~70% yields of arsonolipids. The presence of catalytic amounts of 4-dimethylaminopyridine boosted the yields to 82–85%. This yield is a great improvement over the yields (20–55%) previously achieved. The acylating systems (RCO)2O or RCOCl and BF3·Et2O gave only moderate yields (25–60%) of arsonolipids.  相似文献   

13.
The compatibility of chitosan (CS) and poly(vinyl pyrrolidone) was investigated by molecular dynamic (MD) simulations using the Flory–Huggins theory. The specific interactions in blends were studied by the radial distribution function (RDF). The Flory–Huggins interaction parameter, χ, was calculated at 298 K to assess the blend compatibility at different component ratios in the polymers. Miscibility was observed for blends with more than 50% of CS in the molar fraction, while immiscibility was prevalent at the molar fraction of CS between 10 and 50% of CS. Miscibility between poly(N-vinyl-2-pyrrolidone) (PVP) and CS polymers is attributed to the hydrogen bond formation of the –C = O group of PVP and the –CH2OH groups of CS. This was further confirmed by MD simulations of RDFs for groups or atoms that are involved in interactions. These results are correlated well to obtain more realistic information on interactions involved as a function of blend composition.  相似文献   

14.
The study of anisotropy light scattering from tapioca and potato starches has continued with the recording of more detailed experimental single-granule Hv scattering patterns and, for the first time, single-granule Vv patterns. Quantitative analysis of the higher order scattering maxima to the granule morphology, permitting an analysis of the latter in terms of a lyered structure. For tapioca starch, this analysis indicates that if layering is present at all, the layer thickness is comparable to the wavelength of the incident radiation, and most likely is considerably less than 0.5 μ in thickness. On the other hand, the potato starch morphology is characterized by a relatively coarse layering with few layers and considerable difference in the anisotropy between successive layers. The models for the two starches in best agreement with experimental data are as follows: almost perfectly spherulitic anisotropic structure with very thin shell-like layers—if any—for tapioca, and alternating layers of varying anisotropy several microns in thickness and probably simultaneously present with an isotropic center, for potato starch. The Vv pattern for tapioca starch is in agreement with this model, although its information content is lower owing to the experimental difficulty of recording higher order maxima. Suggestions for further morphological study of starches are presented.  相似文献   

15.
The biodegradation of iron-citrate complexes depends on the structure of the complex formed between the metal and citric acid. Ferric iron formed a bidentate complex with citric acid, [Fe(III) (OH)2 cit]2- involving two carboxylic acid groups, and was degraded at the rate of 86 μM h-1. In contrast, ferrous iron formed a tridentate complex with citric acid, [Fe(II) cit]-, involving two carboxylic acid groups and the hydroxyl group, and was resistant to biodegradation. However, oxidation and hydrolysis of the ferrous iron resulted in the formation of a tridentate ferric-citrate complex, [Fe(III)OH cit]-, which was further hydrolyzed to a bidentate complex, [Fe(III)(OH)2 cit]2-, that was readily degraded. The rate of degradation of the ferrous-citrate complex depended on the rate of its conversion to the more hydrolyzed form of the ferric-citrate complex. Bacteria accelerated the conversion much more than did chemical oxidation and hydrolysis.  相似文献   

16.
Portis AR 《Plant physiology》1982,70(2):393-396
The effect of external inorganic phosphate (Pi) on starch synthesis in isolated spinach (Spinacia oleracea American Hybrid No. 424) chloroplasts in the presence of millimolar concentrations of 3-phosphoglycerate (PGA) and/or dihydroxyacetone phosphate (DAP) was examined. Whereas CO2 fixation was relatively constant as the ratio of the external phosphate to the PGA + DAP varied from 1:3 to 3:1, starch synthesis varied from 17% to 2% of the CO2 fixation rate. With DAP alone, maximal starch synthesis was about 10% of the CO2 fixation rate. The data demonstrate that the Pi/(PGA + DAP) ratio in the cytoplasm of plant cells could serve to regulate the flow of newly fixed carbon into starch without alterations in the rate of CO2 fixation.  相似文献   

17.
Direct fermentation of gelatinized sago starch into solvent (acetone–butanol–ethanol) by Clostridium acetobutylicum P262 was studied using a 250 ml Schott bottle anaerobic fermentation system. Total solvent production from fermentation using 30 g sago starch/l (11.03g/l) was comparable to fermentation using corn starch and about 2-fold higher than fermentation using potato or tapioca starch. At the range of sago starch concentration investigated (10–80 g/l), the highest total solvent production (18.82 g/l) was obtained at 50 g/l. The use of a mixture of organic and inorganic nitrogen source (yeast extract + NH4NO3) enhanced growth of C. acetobutylicum, starch hydrolysis and solvent production (24.47 g/l) compared to the use of yeast extract alone. This gave the yield based on sugar consumed of 0.45 g/g. Result from this study also showed that the individual concentrations of nitrogen and carbon influenced solvent production to a greater extent than did carbon to nitrogen (C/N) ratio.  相似文献   

18.
The adsorptive and diffusive behaviour of methane and carbon dioxide in amorphous nanoporous adsorbents composed of spherosilicate building blocks, in which isolated metal sites have been distributed, is examined. The adsorbent contains cubic silicate building blocks (spherosilicate units: Si8O20), which are cross linked by SiCl2O2 bridges and decorated with either –OTiCl3 or –OSiMe3 groups of the other cube corners. The model structures were generated to correspond to experimentally synthesised materials, matching physical properties including density, surface area and accessible volume. It is shown that both methane and carbon dioxide adsorb via physisorption only in the modelled materials. Adsorption isotherms and energies at 300 K for pressures up to 100 bar were generated via molecular simulation. The maximum gravimetric capacity of CH4 is 16.9 wt%, occurring at 300 K and 97 bar. The maximum gravimetric capacity of CO2 is 50.3 wt%, occurring at 300 K and 51.6 bar. The best performing adsorbent was a low-density (high accessible volume) material with no –OTiCl3 groups. The presence of –OTiCl3 did not enhance physisorption even on a volumetric basis, and the high molecular weight of –OTiCl3 groups is a significant penalty on a gravimetric basis. Based on the pair correlation functions, the most favourable adsorption sites for both adsorbates are located in front of the faces of spherosilicate cubes. The self-diffusivity and activation energy for diffusion are also reported.  相似文献   

19.
Abstract

31P NMR was used to study the specific interaction of an oligodeoxynucleotide containing four thymines and covalently attached to an acridine derivative through its 3-phosphate [(Tp)4(CH2)5Acr] with a complementary oligoribonucleotide (Ap)3A.31P-1H and 1H-1H chemical shift correlation spectroscopies were jointly used to provide the assignment of the phosphorus resonances. A downfield shift of two phosphorus resonances of (Tp)4(CH2)5Acr and of two phosphorus resonances of (Ap)4A was observed upon complex formation. The assignment of the phosphorus resonances which are downfield shifted allowed us to propose a model involving an equilibrium between several 1:1 complexes where the acridine ring is intercalated between different A.T base pairs.  相似文献   

20.
Summary In natural environments the stinging nettle plant,Urtica pilulifera, bears stinging cells in which electron dense silica deposits occupy a significant volume of the cell wall. Plants were grown in hydroponic solutions with and without supplements of silicic acid, the chemical form of silicon available to biological systems to determine if this plant and the stinging cells will grow normally under conditions of silicon starvation. In separate experiments, several analogs of silicic acid were added as supplements to the hydroponic solution to determine whether silicic acid binding sites had detectably different specificities for the different molecular structures of the analogs. The analogs [(R-)nSi(-OH)m] have the following structures (R, n, m): (1)-H, 1, 3; (2)-CH3, 1, 3; (3)-CH3, 2, 2; (4)-CH3, 3, 1; (5)-CH2CH3, 1, 3; and (6)-C6H5, 1, 3. Electron microscopy was used as an assay for the uptake and incorporation of analogs into an electron dense silica-like product in the stinging cell wall. The results indicate that cell wall silica production occurred only when the analog contained at least three hydroxyl groups. The morphology and ontogeny of the plant was normal except for: 1, the appearance of green spots on the leaves when the analog contained two or more hydroxyl groups, and 2, total blockage of flowering by the two methyl derivative of silicic acid, (CH3)2Si(OH)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号