首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which is a non-alignment based method for sequence analysis to map conserved sequences in glycoside hydrolase families. The conserved sequences were used to identify similar genes in the M. circinelloides genome. We found 12 different novel genes encoding members of the GH3, GH5, GH9, GH16, GH38, GH47 and GH125 families in M. circinelloides. One of the two GH3-encoding genes was predicted to encode a β-glucosidase (EC 3.2.1.21). We expressed this gene in Pichia pastoris KM71H and found that the purified recombinant protein had relative high β-glucosidase activity (1.73 U/mg) at pH5 and 50 °C. The Km and Vmax with p-nitrophenyl-β-d-glucopyranoside as substrate was 0.20 mM and 2.41 U/mg, respectively. The enzyme was not inhibited by glucose and retained 84% activity at glucose concentrations up to 140 mM. Although zygomycetes are not considered to be important degraders of lignocellulosic biomass in nature, the present finding of an active β-glucosidase in M. circinelloides demonstrates that enzymes from this group of fungi have a potential for cellulose degradation.  相似文献   

2.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

3.
We investigated the production of chitosan oligosaccharides by continuous hydrolysis of chitosan in an enzyme membrane bioreactor, with the goal of improving the yield of physiologically active oligosaccharides (pentamers and hexamers) and achieving operational stability. The bioreactor was a continuous-flow stirred-tank reactor equipped with an ultrafiltration membrane with a molecular weight cut-off of 2000 Da, and the hydrolysis was accomplished with chitosanase from Bacillus pumilus. After optimization of the reaction parameters, such as the amount of enzyme, the yield of the target oligosaccharides produced in the membrane bioreactor with free chitosanase reached 52% on the basis of the fed concentration of chitosan. An immobilized chitosanase prepared by the multipoint attachment method was used to improve the operational stability of the membrane bioreactor. Under the optimized conditions, pentameric and hexameric chitosan oligosaccharides were steadily produced at 2.3 g/L (46% yield) for a month. The half-life of the productivity of the reactor was estimated to be 50 d under the conditions examined.  相似文献   

4.
The lipase secreted by Burkholderia cepacia ATCC 25416 was particularly attractive in detergent and leather industry due to its specific characteristics of high alkaline and thermal stability. The lipase gene (lipA), lipase chaperone gene (lipB), and native promoter upstream of lipA were cloned. The lipA was composed of 1095 bp, corresponding to 364 amino acid residues. The lipB located immediately downstream of lipA was composed of 1035 bp, corresponding to 344 amino acid residues. The lipase operon was inserted into broad host vector pBBRMCS1 and electroporated into original strain. The homologous expression of recombinant strain showed a significant increase in the lipase activity. LipA was purified by three-step procedure of ammonium sulfate precipitation, phenyl-sepharose FF and DEAE-sepharose FF. SDS-PAGE showed the molecular mass of the lipase was 33 kDa. The enzyme optimal temperature and pH were 60 °C and 11.0, respectively. The enzyme was stable at 30–70 °C. After incubated in 70 °C for 1 h, enzyme remained 72% of its maximal activity. The enzyme exhibited a good stability at pH 9.0–11.5. The lipase preferentially hydrolyzed medium-chain fatty acid esters. The enzyme was strongly activated by Mg2+, Ca2+, Cu2+, Zn2+, Co2+, and apparently inhibited by PMSF, EDTA and also DTT with SDS. The enzyme was compatible with various ionic and non-ionic surfactants as well as oxidant H2O2. The enzyme had good stability in the low- and non-polar solvents.  相似文献   

5.
A Metarhizium anisopliae spore surface lipase (MASSL) strongly bound to the fungal spore surface has been purified by ion exchange chromatography on DEAE sepharose followed by ultrafiltration and hydrophobic interaction chromatography on phenyl sepharose. Electrophoretic analyses showed that the molecular weight of this lipase is ~66 kDa and pI is 5.6. Protein sequencing revealed that identified peptides in MASSL shared identity with several lipases or lipase-related sequences. The enzyme was able to hydrolyze triolein, the animal lipid cholesteryl stearate and all ρNP ester substrates tested with some preference for esters with a short acyl chain. The values of Km and Vmax for the substrates ρNP palmitate and ρNP laurate were respectively 0.474 mM and 1.093 mMol min?1 mg?1 and 0.712 mM and 5.696 mMol min?1 mg?1. The optimum temperature of the purified lipase was 30 °C and the enzyme was most stable within the most acid pH range (pH 3–6). Triton X-100 increased and SDS reduced enzyme lipolytic activity. MASSL activity was stimulated by Ca2+, Mg2+ and Co2+ and inhibited by Mn2+. The inhibitory effect on activity exerted by EDTA and EGTA was limited, while the lipase inhibitor Ebelactone B completely inhibited MASSL activity as well as PMSF. Methanol 0.5% apparently did not affect MASSL activity while β-mercaptoethanol activated the enzyme.  相似文献   

6.
《Process Biochemistry》2014,49(12):2107-2113
Chitosanase-coated silica-gels were prepared via cross-linking of the chitosanase onto silica-gels for the efficient production of multisize chitooligosaccharides (MCOs) in a continuous process. The kinetic aspects of immobilized chitosanase (IMMCTase) were investigated based on the reaction time, production of MCOs, and MALDI-TOF mass analyses to achieve maximum bioconversion of high molecular weight chitosan (HMWC) to MCOs. IMMCTase revealed a negligible loss of chitosanase activity after multi uses in continuous digestion of HMWC. The optimal temperature of IMMCTase was 37 °C, and kinetic parameters toward HMWC were determined to be Km = 1.45 mM and Vmax = 360 μmole/μg/min, respectively. Under optimal conditions, the recovery of enzyme activity of IMMCTase was determined to be 82.3%, thus indicating that it can still be reused few more times. In conclusion, use of IMMCTase resulted in rapid and efficient digestions of HMWC with consistent results to produce MCOs.  相似文献   

7.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

8.
Lipase production (8.02 ± 0.24 U/ml) by the yeast Aureobasidium pullulans HN2.3 isolated from sea saltern was carried by using time-dependent induction strategy. The lipase in the supernatant of the yeast cell culture was purified to homogeneity with a 3.4-fold increase in specific lipase activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography and anion-exchange chromatography. According to the data on SDS polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 63.5 kDa. The optimal pH and temperature of the purified enzyme were 8.5 and 35 °C, respectively. The enzyme was greatly inhibited by Hg2+, Fe2+ and Zn2+. The enzyme was strongly inhibited by phenylmethanesulphonyl fluoride, not inhibited by ethylene diamine tetraacetic acid (EDTA), but weakly inhibited by iodoacetic acid. It was found that the purified lipase had the highest hydrolytic activity towards peanut oil.  相似文献   

9.
《Process Biochemistry》2007,42(6):988-994
A lipase from Bacillus cereus C71 was purified to homogeneity by ammonium sulfate precipitation, followed by Phenyl-Sepharose chromatography, DEAE ion exchange chromatography and CIM® QA chromatography. This purification procedure resulted in a 1092-fold purification of lipase with 18% yield. The molecular mass of the purified enzyme was determined to be approximately 42 kDa by SDS-PAGE and mass spectrometer. The lipase was stable in the pH range of 8.5–10.0, with the optimum pH 9.0. The enzyme exhibited maximum activity at 33 °C and retained 92% of original activity after incubation at 35 °C for 3 h. The protein hydrolyzed p-nitrophenyl esters with acyl chain lengths between C4 and C12. Enzyme activity was strongly inhibited in the presence of Cu2+ and Zn2+ but promoted by non-ionic surfactants. The lipase demonstrated higher enantioselectivity toward R-isomer of ethyl 2-arylpropanoate than the commercial lipases, and can be used potentially as a catalyst to prepare optically pure pharmaceuticals.  相似文献   

10.
ORF Cthe0357 from the thermophilic bacterium Clostridium thermocellum ATCC 27405 that encodes a putative α-glucan phosphorylase (αGP) was cloned and expressed in Escherichia coli. The protein with a C-terminal His-tag was purified by Ni2+ affinity chromatography; the tag-free protein obtained from a cellulose-binding module–intein–αGP fusion protein was purified through affinity adsorption on amorphous cellulose followed by intein self-cleavage. Both purified enzymes had molecular weights of ca. 81,000 and similar specific activities. The optimal conditions were pH 6.0–6.5 and 60 °C for the synthesis direction and pH 7.0–7.5 and 80 °C for the degradation direction. This enzyme had broad substrate specificities for different chain length dextrins and soluble starch. The thermal inactivation of this enzyme strongly depended on temperature, protein concentration, and certain addictives that were shown previously to benefit the protein thermostability. The half lifetime of 0.05 mg αGP/mL at 50 °C was extended by 45-fold to 90 h through a combined addition of 0.1 mM Mg2+, 5 mM DTT, 1% NaCl, 0.1% Triton X-100, and 1 mg/mL BSA. The enzyme with prolonged stability would work as a building block for cell-free synthetic enzymatic pathway biotransformations, which can implement complicated biocatalysis through assembly of a number of enzymes and coenzymes.  相似文献   

11.
《Process Biochemistry》2014,49(10):1682-1690
Double enzymes (alcalase and trypsin) were effectively immobilized in a composite carrier (calcium alginate–chitosan) to produce immobilized enzyme beads referred to as ATCC. The immobilization conditions for ATCC were optimized, and the immobilized enzyme beads were characterized. The optimal immobilization conditions were 2.5% of sodium alginate, 10:4 sodium alginate to the double enzymes, 3:7 chitosan solution to CaCl2 and 2.5 h immobilization time. The ATCC beads had greatly enhanced stability and good usability compared with the free form. The ATCC residual activity was retained at 88.9% of DH (degree of hydrolysis) after 35 days of storage, and 36.0% of residual activity was retained after three cycles of use. The beads showed a higher zein DH (65.8%) compared with a single enzyme immobilized in the calcium alginate beads (45.5%) or free enzyme (49.3%). The ATCC kinetic parameters Vmax and apparent Km were 32.3 mL/min and 456.62 g−1, respectively. Active corn peptides (CPs) with good antioxidant activity were obtained from zein in the ethanol phase. The ATCC might be valuable for preparing CPs and industrial applications.  相似文献   

12.
Expression of recombinant proteins as inclusion bodies in bacteria is one of the most efficient ways to produce cloned proteins, as long as the inclusion bodies can be successfully refolded. In this study, the different parameters were investigated and optimized on the refolding of denatured lipase. The maximum lipase activity of 5000 U/L was obtained after incubation of denatured enzyme in a refolding buffer containing 20 mM Tris–HCl (pH 7.0), 1 mM Ca2+ at 20 °C. Then, the refolded lipase was purified to homogeneity by anion exchange chromatography. The purified refolded lipase was stable in broad ranges of temperatures and pH values, as well as in a series of water-miscible organic solvents. In addition, some water-immiscible organic solvents, such as petroleum ether and isopropyl ether, could reduce the polarity and increase the nonpolarity of the refolding system. The results of Fourier transform infrared (FT-IR) microspectroscopy were the first to confirm that lipase refolding could be further improved in the presence of organic solvents. The purified refolded lipase could enantioselectively hydrolyze trans-3-(4-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM]. These features render the lipase attraction for biotechnological applications in the field of organic synthesis and pharmaceutical industry.  相似文献   

13.
Lipases are water-soluble enzymes that catalyze the hydrolysis of triacylglycerols (in aqueous media) or trans-esterification reactions (in microaqueous media) and are involved in a number of industrial applications. As a limit to lipase application is represented by the need for interfacial activation, the search for suitable solid supports able to fulfill this requirement is always ongoing. In the present work, we report the preliminary characterization of a system obtained by adsorbing Pseudomonas fluorescens lipase on a newly synthesized cyclodextrin-based carbonate nanosponge (CD–NS–1:4). The activity and structural stability of lipase adsorbed on this new support were evaluated by checking the effect of temperature, pH changes and organic solvents (methanol) on the enzyme structure and function, which were compared with those of the free enzyme in solution. Our data show that the non-covalent interaction of Ps. fluorescens lipase with CD–NS–1:4 results in enzyme structural and functional stabilization, as it was still active after 66 days of incubation at T  18 °C. Stabilization with respect to T, pH and the presence of organic solvent was observed as well as, unlike the solubilized enzyme, the adsorbed lipase was active at T > 40 °C, at pH 5 and after 24-h incubation with 70% (v/v) methanol (13% residual activity).  相似文献   

14.
A psychrophilic bacterium producing cold-active lipase upon growth at low temperature was isolated from the soil samples of Gangotri glacier and identified as Microbacterium luteolum. The bacterial strain produced maximum lipase at 15 °C, at a pH of 8.0. Beef extract served as the best organic nitrogen source and ammonium nitrate as inorganic for maximum lipase production. Castor oil served as an inducer and glucose served as an additional carbon source for production of cold-active lipase. Ferric chloride as additional mineral salt in the medium, highly influenced the lipase production with an activity of 8.01 U ml?1. The cold-active lipase was purified to 35.64-fold by DEAE-cellulose column chromatography. It showed maximum activity at 5 °C and thermostability up to 35 °C. The purified lipase was stable between pH 5 and 9 and the optimal pH for enzymatic hydrolysis was 8.0. Lipase activity was stimulated in presence of all the solvents (5%) tested except with acetonitrile. Lipase activity was inhibited in presence of Mn2+, Cu2+, and Hg2+; whereas Fe+, Na+ did not have any inhibitory effect on the enzyme activity. The purified lipase was stable in the presence of SDS; however, EDTA and dithiothreitol inhibited enzyme activity. Presence of Ca2+ along with inhibitors stabilized lipase activity. The cold active lipase thus exhibiting activity and stability at a low temperature and alkaline pH appears to be practically useful in industrial applications especially in detergent formulations.  相似文献   

15.
The pool of thiamine diphosphate (TDP), available for TDP-dependent enzymes involved in the major carbohydrate metabolic pathways, is controlled by two enzyme systems that act in the opposite directions. The thiamine pyrophosphokinase (TPK) activates thiamine into TDP and the numerous phosphatases perform the reverse two-step dephosphorylation of TDP to thiamine monophosphate (TMP) and then to free thiamine. Properties and a possible cooperation of those enzymes in higher plants have not been extensively studied. In this work, we characterize highly purified preparations of TPK and a TDP/TMP phosphatase isolated from 6-day Zea mays seedlings. TPK was the 29-kDa monomeric protein, with the optimal activity at pH 9.0, the Km values of 12.4 μM and 4.7 mM for thiamine and ATP, respectively, and the Vmax value of 360 pmol TDP min?1 mg?1 protein. The enzyme required magnesium ions, and the best phosphate donor was GTP. The purified phosphatase was the dimer of 24 kDa subunits, showed the optimal activity at pH 5.0 and had a rather broad substrate specificity, although TDP, but not TMP, was one of the preferable substrates. The Km values for TDP and TMP were 36 μM and 49 μM, respectively, and the Vmax value for TDP was significantly higher than for TMP (164 versus 60 nmoles min?1 mg?1 protein). The total activities of TPK and TDP phosphatases were similarly decreased when the seedlings were grown under the illumination, suggesting a coordinated regulation of both enzymes to stabilize the pool of the essential coenzyme.  相似文献   

16.
An extracellular lipase gene ln1 from thermophilic fungus Thermomyces lanuginosus HSAUP0380006 was cloned through RT-PCR and RACE amplification. Its coding sequence predicted a 292 residues protein with a 17 amino acids signal peptide. The deduced amino acids showed 78.4% similarity to another lipase lgy from T. lanuginosus while shared low similarity with other fungi lipases. Higher frequencies hydrophobic amino acids related to lipase thermal stability, such as Ala, Val, Leu and Gly were observed in this lipase (named LN). The sequence, -Gly-His-Ser-Leu-Gly-, known as a lipase-specific consensus sequence of mould, was also found in LN. High level expression for recombinant lipase was achieved in Pichia pastoris GS115 under the control of strong AOX1 promoter. It was purified to homogeneity through only one step DEAE-Sepharose anion exchange chromatography and got activity of 1328 U/ml. The molecular mass of one single band of this lipase was estimated to be 33 kDa by SDS-PAGE. The enzyme was stable at 60 °C and kept 65% enzyme activity after 30 min incubation at 70 °C. It kept half-activity after incubated for 40 min at 80 °C. The optimum pH for enzyme activity was 9.0 and the lipase was stable from pH 8.0 to 12.0. Lipase activity was enhanced by Ca2+ and inhibited by Fe2+, Zn2+, K+, and Ag+. The cell-free enzyme hydrolyzed and synthesized esters efficiently, and the synthetic efficiency even reached 81.5%. The physicochemical and catalytic properties of the lipase are extensively investigated for its potential industrial applications.  相似文献   

17.
A NADH-dependent nitroreductase from an efficient nitro-reducing soil bacterium, Streptomyces mirabilis DUT001, was isolated and characterized. The enzyme was purified to near homogeneity using ammonium sulfate precipitation, ion exchange chromatography, and gel filtration chromatography. The native enzyme was estimated by gel filtration to have a molecular weight of 68 kDa, and its subunit molecular weight determined by SDS-PAGE was about 34 kDa, which indicated this enzyme was a dimer. Polycyclic nitroaromatic compounds were preferred substrates for this enzyme. The purified enzyme exhibited maximum activity at pH 7.5 and 40 °C. The addition of various chemicals such as reducing agents, metal ions, and chelating agents, had effects on enzyme activity. Mg2+, Ca2+, Sr2+, and 1% (w/v) Triton X-100 increased activity. However, Hg2+, Co2+, Ni2+, Cu2+, and SDS reduced activity. The maximum reaction rate (Vmax) was 64 μM min?1 mg?1 enzyme and the apparent Michaelis–Menten constants (Km) for 4-nitro-1,8-naphthalic anhydride and NADH were 276 and 29 μM, respectively. Menadione, bimethylenebis, sodium benzoate, and antimycin A were inhibitors of the purified nitroreductase with apparent inhibition constants (Kis) of 20, 36, 44 and 80 μM, respectively.  相似文献   

18.
A novel lipase encoding gene, TALipB from Trichosporon asahii MSR54 was heterologously expressed in Escherichia coli using three vectors, pET22b, pET28a & pEZZ18. The three recombinant proteins, viz. C-hexahistidine fused HLipB, N and C-hexahistidine fused HLipBH and ZZ-fused ZZLipB were purified using affinity chromatography. All the three enzymes were mid to long fatty acyl chain selective on p-NP esters and S-enantioselective irrespective of tags. HLipB had lowest activation energy (3.5 Kcal mol−1) and highest catalytic efficiency (254 mM−1 min−1) on p-NP caprate followed by HLipBH and ZZLipB. However, ZZLipB demonstrated best pH stability (pH 6–10), thermostability (t1/2 of 50 min at 70 °C) and stability toward the denaturant Guanidium chloride (300 mM). Far-UV CD and fluorescence studies confirmed the role of N-terminal ZZ-tag in stabilizing the protein by altering its secondary and tertiary structures. All the three proteins were thiol activated. ZZLipB required higher concentration of β-mercaptoethanol as compared to the other two proteins to attain similar velocity. This indicated the involvement of additional disulfide bonds in its conformational stability. In silico analysis suggested low sequence identity of the enzyme with the available database but a close structural homology with Candida antarctica lipase B (CALB) was revealed by PHYRE2. MULTALIN with CALB predicted the active site residues (Ser137–Asp228–His261) which were confirmed by superimposition and site directed mutagenesis.  相似文献   

19.
We have analyzed the effects of the buffer nature on the stability of immobilized lipases. Commercial phospholipase Lecitase Ultra (LU), lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl-glyoxyl agarose beads. The enzymes were readily inactivated using 4 M sodium phosphate but 6 M NaCl did not inactivate them. Using 2 M of sodium phosphate, the inactivation of the 3 immobilized enzymes still was very significant even at 25 °C but at lower rate than with higher phosphate concentration. Thermal stress inactivations of the immobilized enzymes revealed that even 100 mM sodium phosphate produced a significant decrease in enzyme stability; this effect was less pronounced for Lecitase but dramatic for CALB. While 6 M NaCl presented slightly positive (LU) or negative (TLL) effects on their thermal stabilities of, CALB was thermally stabilized under the same conditions. Results were very different using free enymes. Fluorescence spectroscopy revealed dramatic structural rearrangements of the immobilized enzymes in the presence of high phosphate concentration. From these results, the use of sodium phosphate does not seem to be recommended for studies on thermal stability of lipases, although this should be verified for each enzyme and immobilized preparation.  相似文献   

20.
Chitin, which is a polymer of β-(1–4) linked N-acetyl-d-glucosamine (GlcNAc) residues, is one of the most abundant renewable resources in nature, after cellulose. In this study, we found some native Mucor strains, which can use GlcNAc and chitin substrates as carbon sources for growth and ethanol production. One of these strains, M. circinelloides NBRC 6746 produced 18.6 ± 0.6 g/l of ethanol from 50 g/l of GlcNAc after 72 h and the maximum ethanol production rate was 0.75 ± 0.1 g/l/h. Furthermore, M. circinelloides NBRC 4572 produced 6.00 ± 0.22 and 0.46 ± 0.04 g/l of ethanol from 50 g/l of colloidal chitin and chitin powder after 16 and 12 days, respectively. We also found an extracellular chitinolytic enzyme producing strain M. ambiguus NBRC 8092, and successfully improved ethanol productivity of NBRC 4572 from colloidal chitin using crude chitinolytic enzyme derived from NBRC 8092. The ethanol titer reached 9.44 ± 0.10 g/l after 16 days. These results were the first bioethanol production from GlcNAc and chitin substrates by native organisms, and also suggest that these Mucor strains have great potential for the simultaneous saccharification and fermentation (SSF) of chitin biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号