首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different hydroxypropyl methylcellulose (HPMC)/anhydrous dibasic calcium phosphate (ADCP) matrix tablets have been developed aiming to evaluate the influence of both components ratio in the control release of a water-soluble drug (theophylline). In order to characterise the matrix tablets, swelling, buoyancy and dissolution studies have been carried out in different aqueous media (demineralised water, progressive pH medium, simulated gastric fluid, simulated intestinal fluid and simulated colonic fluid). The HPMC/ADCP ratio has turned out to be the determinant in the matrix behaviour: the HPMC characteristic swelling behaviour was modulated, in some cases, by the ADCP characteristic acidic dissolution. When the HPMC/ADCP ratio was ≥0.69, buoyancy, continuous swelling and low theophylline dissolution rate from the matrices (H1, H2 and H3) were observed in all dissolution media. Consequently, these formulations could be adequate as gastro-retentive drug delivery systems. Additionally, HPMC/ADCP ratio ≤0.11 (H5 and H6) induces a pH-dependent drug release which could be applied to design control drug release enteric formulations (with a suitable enteric coating). Finally, a HPMC/ADCP ratio between 0.11 and 0.69 (H4) yield a gastrointestinal controlled drug release, due to its time-dependent buoyancy (7 h) and a total drug delivery in 17 h in simulated colonic fluid.Key words: anhydrous dibasic calcium phosphate, hydroxypropyl methylcellulose, matrix tablets, oral controlled release, theophylline  相似文献   

2.
The objectives were to characterize propranolol hydrochloride-loaded matrix tablets using guar gum, xanthan gum, and hydroxypropylmethylcellulose (HPMC) as rate-retarding polymers. Tablets were prepared by wet granulation using these polymers alone and in combination, and physical properties of the granules and tablets were studied. Drug release was evaluated in simulated gastric and intestinal media. Rugged tablets with appropriate physical properties were obtained. Empirical and semi-empirical models were fit to release data to elucidate release mechanisms. Guar gum alone was unable to control drug release until a 1:3 drug/gum ratio, where the release pattern matched a Higuchi profile. Matrix tablets incorporating HPMC provided near zero-order release over 12 h and erosion was a contributing mechanism. Combinations of HPMC with guar or xanthan gum resulted in a Higuchi release profile, revealing the dominance of the high viscosity gel formed by HPMC. As the single rate-retarding polymer, xanthan gum retarded release over 24 h and the Higuchi model best fit the data. When mixed with guar gum, at 10% or 20% xanthan levels, xanthan gum was unable to control release. However, tablets containing 30% guar gum and 30% xanthan gum behaved as if xanthan gum was the sole rate-retarding gum and drug was released by Fickian diffusion. Release profiles from certain tablets match 12-h literature profiles and the 24-h profile of Inderal® LA. The results confirm that guar gum, xanthan gum, and HPMC can be used for the successful preparation of sustained release oral propranolol hydrochoride tablets.  相似文献   

3.
The purpose of this study was to investigate the efficiency of superdisintegrants in promoting tablet disintegration and drug dissolution under varied media pH. Significant reductions in the rate and extent of water uptake and swelling were observed for both sodium starch glycolate (Primojel) and croscarmellose sodium (Ac-Di-Sol) in an acidic medium (0.1 N HCl) but not for crospovidone NF (Polyplasdone XL10), a nonionic polymer. When Primojel and Ac-Di-Sol were incorporated in model formulations, a significant increase in tablet disintegration time was observed for slowly disintegrating tablets (lactose-based tablets) but not for the rapidly disintegrating tablets (dicalcium phosphate-based tablets). The dissolution rate of the model drug, hydrochlorothiazide, was found highly dependent on both tablet disintegration efficiency and the solubility of base material(s) in the testing medium. A laser diffraction particle size analyzer proved to be an effective tool for determining the intrinsic swelling of disintegrant particles in different media. Water uptake and swelling were confirmed as 2 important functions of superdisintegrants. The reduced water uptake and swelling capacity of disintegrants containing ionizable substituents in an acidic medium can potentially jeopardize their efficiency in promoting tablet disintegration and the drug dissolution rate. Published: September 20, 2005  相似文献   

4.
The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug’s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics.  相似文献   

5.
The aim of the present investigation was to develop oral controlled release matrix tablet formulations of isoniazid using hydroxypropyl methylcellulose (HPMC) as a hydrophilic release retardant polymer and to study the influence of various formulation factors like proportion of the polymer, polymer viscosity grade, compression force, and release media on the in vitro release characteristics of the drug. The formulations were developed using wet granulation technology. The in vitro release studies were performed using US Pharmacopoeia type 1 apparatus (basket method) in 900 ml of pH 7.4 phosphate buffer at 100 rpm. The release kinetics was analyzed using Korsmeyer–Peppas model. The release profiles were also analyzed using statistical method (one-way analysis of variance) and f 2 metric values. The release profiles found to follow Higuchi’s square root kinetics model irrespective of the polymer ratio and the viscosity grade used. The results in the present investigation confirm that the release rate of the drug from the HPMC matrices is highly influenced by the drug/HPMC ratio and viscosity grade of the HPMC. Also, the effect of compression force and release media was found to be significant on the release profiles of isoniazid from HPMC matrix tablets. The release mechanism was found to be anomalous non-Fickian diffusion in all the cases. In the present investigation, a series of controlled release formulations of isoniazid were developed with different release rates and duration so that these formulations could further be assessed from the in vivo bioavailability studies. The formulations were found to be stable and reproducible.  相似文献   

6.
The objective of this study was to investigate the effect of lipophilic (Compritol 888 ATO) and hydrophilic components (combination of HPMC and Avicel) on the release of carbamazepine from granules and corresponding tablet. Wet granulation followed by compression was employed for preparation of granules and tablets. The matrix swelling behavior was investigated. The dissolution profiles of each formulation were compared to those of Tegretol CR tablets and the mean dissolution time (MDT), dissolution efficiency (DE %) and similarity factor (f(2) factor) were calculated. It was found that increase in the concentration of HPMC results in reduction in the release rate from granules and achievement of zero-order is difficult from the granules. The amount of HPMC plays a dominant role for the drug release. The release mechanism of CBZ from matrix tablet formulations follows non-Fickian diffusion shifting to case II by the increase of HPMC content, indicating significant contribution of erosion. Increasing in drug loading resulted in acceleration of the drug release and in anomalous controlled-release mechanism due to delayed hydration of the tablets. These results suggest that wet granulation followed by compression could be a suitable method to formulate sustained release CBZ tablets.  相似文献   

7.
The objective of this study was to design oral controlled release matrix tablets of lamivudine using hydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of various formulation factors such as polymer proportion, polymer viscosity, and compression force on the in vitro release of drug. In vitro release studies were performed using US Pharmacopeia type 1 apparatus (basket method) in 900 mL of pH 6.8 phosphate buffer at 100 rpm. The release kinetics were analyzed using the zero-order model equation, Higuchi's square-root equation, and the Ritger-Peppas empirical equation. Compatibility of the drug with various excipients was studied. In vitro release studies revealed that the release rate decreased with increase in polymer proportion and viscosity grade. Increase in compression force was found to decrease the rate of drug release. Matrix tablets containing 60% HPMC 4000 cps were found to show good initial release (26% in first hour) and extended the release up to 16 hours. Matrix tablets containing 80% HPMC 4000 cps and 60% HPMC 15,000 cps showed a first-hour release of 22% but extended the release up to 20 hours. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation and therefore followed non-Fickian or anomalous release. No incompatibility was observed between the drug and excipients used in the formulation of matrix tablets. The developed controlled release matrix tablets of lamivudine, with good initial release (20%-25% in first hour) and extension of release up to 16 to 20 hours, can overcome the disadvantages of conventional tablets of lamivudine.  相似文献   

8.
The objective of this work was to develop matrix sustained-release tablets of highly water-soluble tramadol HCl using natural gums (xanthan [X gum] and guar [G gum]) as cost-effective, nontoxic, easily available, and suitable hydrophilic matrix systems compared with the extensively investigated hydrophilic matrices (ie, hydroxypropyl methylcellulose [HPMC]/carboxymethyl cellulose [CMC] with respect to in vitro drug release rate) and hydration rate of the polymers. Matrix tablets of tramadol (dose 100 mg) were produced by direct compression method. Different ratios, of 100∶0, 80∶20, 60∶40, 20∶80, 0∶100 of G gum (or X):HPMC, X gum:G gum, and triple mixture of these polymers (G gum, X gum, HPMC) were applied. After evaluation of physical characteristics of tablets, the dissolution test was, performed in the phosphate buffer media (pH 7.4) up to 8 hours. Tablets with only X had the highest mean dissolution time (MDT), the least dissolution efficiency (DE8%), and released the drug following a zero-order model via swelling, diffusion, and erosion mechanisms. Guar gum alone could not efficiently control the drug release, while X and all combinations of natural gums with HPMC could retard tramadol HCl release. However, according to the similarity factor (f 2), pure HPMC and H8G2 were the most similar formulations to Topalgic-LP as the reference standard. Published: March 17, 2006  相似文献   

9.
The purpose of this study is to characterize the inter-grade and inter-batch variability of sodium alginate used in the formulation of matrix tablets. Four different grades and three batches of one grade of sodium alginate were used to prepare matrix tablets. Swelling, erosion, and drug release tests of sodium alginate matrix tablets were conducted in a USP dissolution apparatus. Substantial differences in swelling and erosion behavior of sodium alginate matrix tablets were evident among different viscosity grades. Even different batches of the same grade exhibit substantial differences in the swelling and erosion behavior of their matrix tablets. The erosion behavior of sodium alginate matrix tablets can be partly explained by their rheological properties (both apparent viscosity and viscoelasticity) in solution. Sodium alginate with higher apparent viscosity and viscoelasticity in solution show slower erosion rate and higher swelling rate. Compacts prepared from grades or batches with higher viscosity and higher viscoelasticity show slower drug release. For grades or batches with similar apparent viscosities, apparent viscosities of sodium alginate solution at low concentration alone are not sufficient to predict the functionality of sodium alginate in matrix tablets. Viscoelastic properties of sodium alginate solutions at one high concentration corresponding to the polymer gel state, may be suitable indicia of the extended release behavior of sodium alginate matrix tablets.  相似文献   

10.
The effect of the concentration of hydrophilic (hydroxypropyl methylcellulose [HPMC]) and hydrophobic (hydrogenated castor oil [HCO]) products, fillers (lactose and dibasic calcium phosphate), and buffers (sodium bicarbonate, calcium carbonate, and sodium citrate) on naproxen release rate was studied. Matrix tablets were prepared by double compression, andIn vitro dissolution tests were performed. The dissolution results showed that an increased amount of HPMC or hydrogenated castor oil resulted in reduced drug release. The inclusion of buffers in the HPMC matrix tablets enhanced naproxen release. For HCO tablets, only sodium bicarbonate enhanced naproxen release. The presence of lactose on HPMC matrix tablets did not show a significantly different result from that obtained with the formulation containing dibasic calcium phosphate as a filler. However, for the tablets containing HCO, the presence of lactose significantly enhanced the naproxen release rate. The matrix-forming materials in this study were suitable for use in sustained-release tablets containing naproxen. The drug release can be modulated by adding suitable amounts of diluents and buffers.  相似文献   

11.
The purpose of this research was to design oral controlled release (CR) matrix tablets of zidovudine (AZT) using hydroxypropyl methylcellulose (HPMC), ethyl cellulose (EC) and carbopol-971P (CP) and to study the effect of various formulation factors on in vitro drug release. Release studies were carried out using USP type 1 apparatus in 900 ml of dissolution media. Release kinetics were analyzed using zero-order, Higuchi’s square root and Ritger–Peppas’ empirical equations. Release rate decreased with increase in polymer proportion and compression force. The release rate was lesser in formulations prepared using CP (20%) as compared to HPMC (20%) as compared to EC (20%). No significant difference was observed in the effect of pH of dissolution media on drug release from formulations prepared using HPMC or EC, but significant difference was observed in CP based formulations. Decrease in agitation speed from 100 to 50 rpm decreased release rate from HPMC and CP formulations but no significant difference was observed in EC formulations. Mechanism of release was found to be dependent predominantly on diffusion of drug through the matrix than polymer relaxation incase of HPMC and EC formulations, while polymer relaxation had a dominating influence on drug release than diffusion incase of CP formulations. Designed CR tablets with pH independent drug release characteristics and an initial release of 17–25% in first hour and extending the release up to 16–20 h, can overcome the disadvantages associated with conventional tablets of AZT.  相似文献   

12.
Currently available anti-ulcer drugs suffer from serious side effects which limited their uses and prompted the need to search for a safe and efficient new anti-ulcer agent. Boswellia gum resin (BR) emerged as a safe, efficient, natural, and economic potential cytoprotective agent. Thus, it is of medical importance to develop gastroretentive (GR) formulations of BR to enhance its bioavailability and anti-ulcer efficacy. Early attempts involved the use of organic solvents and non-applicability to large-scale production. In this study, different tablet formulations were prepared by simple direct compression combining floating and bioadhesion mechanisms employing hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose (SCMC), pectin (PC), and/or carbopol (CP) as bioadhesive polymers and sodium bicarbonate (SB) as a gas former. The prepared tablets were subjected for assessment of swelling, floating, bioadhesion, and drug release in 0.1 N HCl. The optimized GR formulation was examined for its protective effect on the gastric ulcer induced by indomethacin in albino rabbits compared with lactose tablets. The obtained results disclosed that swelling, floating, bioadhesion, and drug release of the GR tablets of BR depend mainly on the nature of the matrix and the ratio of polymer combinations. Moreover, a combination of SCMC-CP in a ratio of 2:1 (SCP21) exhibited desirable floating, bioadhesion, swelling, and extended drug release. Also, a 6-h pretreatment with SCP21 tablets decreased the severity of inflammation and number of bleeding spots among ulcer-induced rabbits in comparison to those treated with lactose tablets.  相似文献   

13.
The aim of this study was to design a polyethylene oxide (PEO) binary hydrophilic matrix controlled system and investigate the most important influence(s) on the in vitro water-insoluble drug release behavior of this controlled system. Direct-compressed PEO binary matrix tablets were obtained from a variety of low viscosity hydrophilic materials as a sustained agent, using anhydrous drugs as a model drug. Water uptake rate, swelling rate, and erosion rate of matrices were investigated for the evaluation of the PEO hydrophilic matrix systems. The effect of the dose, the solubility of water-insoluble drug, and the rheology of polymers on in vitro release were also discussed. Based on the in vitro release kinetics study, three optimized PEO binary matrices were selected for further research. And, these PEO binary matrices had shown the similar release behavior that had been evaluated by the similarity factor f 2. Further study indicated that they had identical hydration, swelling, and erosion rate. Moreover, rheology study exhibited the similar rheological equation of Herschel–Bulkley and their viscosity was also within the same magnitude. Therefore, viscosity plays the most important role to control drug release compared to other factors in PEO binary matrix system. This research provides fundamental understanding of in vitro drug release of PEO binary hydrophilic matrix tablets and helps pharmaceutical workers to develop a hydrophilic controlled system, which will effectively shorten the process of formulation development by reducing trial-and-error.  相似文献   

14.
It is challenging to achieve mechanically robust drug-release profiles from hydrophilic matrices containing a high dose of a drug with good solubility. However, a mechanically robust drug release over prolonged period of time can be achieved, especially if the viscosity and amount of the polymer is sufficiently high, above the “threshold values.” The goal of this research was to determine the hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose (HPMC) polymer threshold amount that would enable robust drug release from matrix tablets containing a high dose of levetiracetam as a class I model drug according to the Biopharmaceutical Classification System (BCS). For this purpose, formulations containing HPC or HPMC of similar viscosity range, but in different amounts, were prepared. Based on the dissolution results, two final formulations were selected for additional in vitro and in vivo evaluation to confirm the robustness and to show bioequivalence. Tablets were exposed to various stress conditions in vitro with the use of different mechanically stress-inducing dissolution methods. The in vitro results were compared with in vivo results obtained from fasted and fed bioequivalence studies. Under both conditions, the formulations were bioequivalent and food had a negligible influence on the pharmacokinetic parameters Cmax and area under the curve (AUC). It was concluded that the drug release from both selected formulations is mechanically robust and that HPC and HPMC polymers with intrinsic viscosities above 9 dL/g and in quantities above 30% enable good mechanical resistance, which ensures bioequivalence. In addition, HPC matrices were found to be more mechanically robust compared to HPMC.KEY WORDS: HPC, HPMC, matrix tablets, mechanically robust dissolution, threshold amount  相似文献   

15.
The aim of this work is to design pH-dependent swellable and erodable-buffered matrices and to study the effect of the microenvironment pH on the release pattern of diclofenac sodium. Buffered matrix tablets containing diclofenac sodium, physically mixed with hydrophilic polymer (hydroxypropyl methylcellulose [HPMC]) and pH-dependent solubility polymer (Eudragit L100-55) were prepared with different microenvironment pHs. The release of diclofenac sodium from the buffer matrices was studied in phosphate buffer solutions of pH 5.9 and 7.4. The swelling and erosion matrices containing only HPMC and Eudragit L100-55 were studied in phosphate buffer solution of pH similar to the microenvironment pHs of the matrices. Drug release from matrices was found to be linear as a function of time. Amount of drug released was found to be higher in the medium of pH 7.4 than that of pH 5.9. The rate of drug release increased with the increase of the microenvironment pH of the matrices as determined from the slope. The pattern of drug release did not change with the change of microenvironment pH. The swelling and erosion occurred simultaneously from matrices made up of HPMC and Eudragit L100-55. Both extent of swelling and erosion increased with increase of the medium pH. It was concluded from this study that changing the pH within the matrix influenced the rate of release of the drug without affecting the release pattern. Fax: Not Forwarded  相似文献   

16.
Hydroxypropyl methylcellulose (HPMC) tablets containing nicotine-magnesium aluminum silicate (NCT-MAS) complex particles and pH modifiers, namely, sodium chloride, citric acid, and magnesium hydroxide, were prepared using the direct compression method. The effects of HPMC viscosity grades and pH modifiers on NCT release and permeation of the matrix tablets were examined. The results showed that the higher the viscosity grade of HPMC that was used in the tablets, the lower was the unidirectional NCT release rate found. The unidirectional NCT permeation was not affected by the viscosity grade of HPMC because the NCT diffusion through the mucosal membrane was the rate-limiting step of the permeation. Incorporation of magnesium hydroxide could retard NCT release, whereas the enhancement of unidirectional NCT release was found in the tablets containing citric acid. Citric acid could inhibit NCT permeation due to the formation of protonated NCT in the swollen tablets at an acidic pH. Conversely, the NCT permeation rate increased with the use of magnesium hydroxide as a result of the neutral NCT that formed at a basic microenvironmental pH. The swollen HPMC tablets, with or without pH modifiers, gave sufficient adhesion to the mucosal membrane. Furthermore, the addition of magnesium hydroxide to the matrix tablets was the major factor in controlling buccal delivery of NCT. This study suggests that the NCT-MAS complex-loaded HPMC tablets, which contained magnesium hydroxide, are potential buccal delivery systems of NCT.  相似文献   

17.
The purpose of this research was to explore theapplication of ionic interactions between naproxen sodium (NS) and chitosan (CH) in complexes (NSC) prepared by tray drying (TD) and spray drying (SD) methods. Drug–polymer ratio (1:1) in the NSC was optimized on the basis of dialysis studies. The particulate systems of NSC were prepared by tray drying (TD) and spray drying (SD) methods. Release retarding polymers were added to the NSC and to the physical mixtures containing NS–CH and their effects on water uptake, matrix erosion and drug release at different pH were compared. Spray dried complexes (SDC) were spherical, free flowing, light and fine amorphous particles in contrast to the crystalline, hard, tenacious, irregularly shaped, denser tray dried complexes (TDC) with poor flowability. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and Fourier transform infrared (FTIR) patterns confirm the conversion of crystalline to high energy amorphous phase suitable for ionic interactions in NSC. Presence of release retarding polymers, kappa carrageenan and hydroxypropylmethylcellulose (HPMC) in the NSC compacts retarded the drug release and improved the matrix integrity. Carrageenan matrices exhibited more retardation than HPMC tablets. FTIR patterns, erosion, swelling and drug release from matrices support ionic interactions between NS and CH in NSC. The reasons for retarded drug release from the chitosan matrices at acidic pH include poor solubility of drug at acidic pH, formation of a rate limiting polymer gel barrier along the periphery of matrices and the ionic interactions between oppositely charged moieties.  相似文献   

18.
This research investigated the use of sodium alginate for the preparation of hydrophylic matrix tablets intended for prolonged drug release using ketoprofen as a model drug. The matrix tablets were prepared by direct compression using sodium alginate, calcium gluconate, and hydroxypropylmethylcellulose (HPMC) in different combinations and ratios. In vitro release tests and erosion studies of the matrix tablets were carried out in USP phosphate buffer (pH 7.4). Matrices consisting of sodium alginate alone or in combination with 10% and 20% of HPMC give a prolonged drug release at a fairly constant rate. Incorporation of different ratios of calcium gluconate leads to an enhancement of the release rate from the matrices and to the loss of the constant release rate of the drug. Only the matrices containing the highest quantity of HPMC (20%) maintained their capacity to release ketoprofen for a prolonged time.  相似文献   

19.
The aim of the present work was the investigation of robustness and reliability of drug release from 50 to 400 mg quetiapine extended release HPMC matrix tablets towards mechanical stresses of biorelevant intensity. The tests were performed under standard conditions (USP apparatus II) as well as under simulated gastrointestinal stress conditions. Mechanical stresses including pressure and agitation were applied by using the biorelevant dissolution stress test apparatus as it has been introduced recently. Test algorithms already established in previous studies were applied to simulate fasting gastrointestinal conditions. The dissolution experiments demonstrated striking differences in the product performance among standard and stress test conditions as well as dose strengths. In USP apparatus II, dissolution profiles were affected mainly by media pH. The dissolution experiments performed in biorelevant dissolution stress test device demonstrated that stress events of biorelevant intensity provoked accelerated drug release from the tablets.  相似文献   

20.
The principles of the percolation theory were applied to further understand and design hydroxypropyl methylcellulose (HPMC) extended release matrix tablets containing carbamazepine and verapamil HCl. This statistical theory studies disordered or chaotic systems where the components are randomly distributed in a lattice. The application of this theory to study the hydration and drug release of hydrophilic matrices allows describing the changes in hydration and drug release kinetics of swellable matrices. The aim of this work was to study and develop extended release matrix formulations for carbamazepine and verapamil HCl, containing hypromellose (HPMC, METHOCEL™ Premium K100M CR) as rate controlling polymer using the concepts of percolation theory. The knowledge of the percolation threshold of the components of the matrix formulations contributes to improve their design. First, reducing the time to market and second, avoiding to formulate in the nearby of the percolation threshold, which will result in a lower variability. Therefore these formulations will be more robust when they are prepared at industrial scale. The HPMC percolation threshold for drugs with very different water solubilities was determined and it was shown that there was no significant influence of drug solubility on the HPMC critical concentration threshold (excipient percolation threshold). This may be related to the versatility and broad functionality of the swelling hydrophilic matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号