首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interactions between fluorescent horse heart cytochrome c derivatives (e. g. porphyrin cytochrome c and Zn-porphyrin cytochrome c) with surfactant interfaces in reversed micellar solutions have been studied, using different spectroscopic techniques. Anionic [sodium bis(2-ethylhexyl)sulfosuccinate, AOT] and cationic (cetyltrime-thylammonium bromide, CTAB) surfactant solutions have been used in order to investigate the effects of charge interactions between proteins and interfaces. Circular dichroism reveals that much of the protein secondary structure is lost in AOT-reversed micelles, especially when the molar water/surfactant ratio, wo, is high (wo = 40), whereas in CTAB-reversed micelles secondary structure seems to be preserved. Time-resolved fluorescence measurements of the porphyrin in the cytochrome c molecule yields information about the changes in structure and the dynamics of the protein upon interaction with surfactant assemblies both in aqueous and in hydrocarbon solutions. With AOT as surfactant a strong interaction between protein and interface can be observed. The effects found in aqueous AOT solution are of the same kind as in hydrocarbon solution. In the CTAB systems the interactions between protein and surfactant are much less pronounced. The measured effects on the fluorescence properties of the proteins are different in aqueous and hydrocarbon solutions. In general, the observations can be explained by an electrostatic attraction between the overall positively charged protein molecules and the anionic AOT interface. Electrostatic attraction can also occur between the cytochrome c derivatives and CTAB because there is a negatively charged zone on the surface of the proteins. From the fluorescence anisotropy decays it can be concluded that in the CTAB-reversed micellar system these interactions are not important, whereas in an aqueous CTAB solution the proteins interact with surfactant molecules.  相似文献   

2.
Yang J  Zhao J  Fang Y 《Carbohydrate research》2008,343(4):719-725
Interactions between the polyelectrolyte sodium alginate (NaAlg) and the anionic surfactant sodium dodecyl sulfate (SDS) have been investigated by microcalorimetric techniques. The polymer-surfactant interactions were observed between NaAlg and SDS at different pH values in dilute solution. The thermodynamic parameters for their interaction process are evaluated from the results of the observed dilution enthalpy curves. As the pH value of the solution decreases from 7 to 6, NaAlg polymers have an obvious effect on the cmc of SDS as a simple salt, which indicates no association between SDS and NaAlg owing to electrostatic repulsion. With the progressive decrease of pH value from 5 to 3, the hydrophobic segments in the alginate chains are increasing and the hydrophilic segments decreasing, and the aggregation between SDS and alginate due to hydrophobic interactions is observed.  相似文献   

3.
Molecular dynamics simulation was employed to investigate the restructuring process of CTAB monolayer at mica/water interface. The reversing process of CTAB monolayer was exploited by diffusion of water molecules, reversing of CTAB molecules with time evolution and restructuring of the surfactant monolayer. The results showed that bromide ions around surfactant head groups diffused into bulk water readily due to the electrostatic repulsion caused by negatively charged mica surface. Meanwhile, because of the electrostatic attraction between water molecules and mica surface, part of water molecules can penetrate the surfactant monolayer to form water channel which bridges bulk water and mica surface. The monolayer structure was disturbed by diffusion of bromide ions and formation of water channel. Few of the head groups of surfactants tended to reverse and enter into aqueous solution. The number of reversed surfactant molecules increased with time evolution. The monolayer restructured into bilayer structure gradually. Finally, a cylindrical aggregate was obtained.  相似文献   

4.
Combing DNA on CTAB-coated surfaces   总被引:1,自引:0,他引:1  
A fluorescence microscope (FM) coupled with an intensified charge-coupled device (ICCD) camera was used to investigate the combing of DNA on cetyltrimethyl ammonium bromide (CTAB)-coated glass surfaces. DNA molecules can be combed uniform and straight on CTAB-coated surfaces. Different combing characteristics at different pH values were found. At lower pH (ca. 5.5), DNA molecules were stretched 30% longer than the unextended and DNA extremities bound with CTAB-coated surfaces via hydrophobic interaction. At high pH values (e.g., 6.4 and 6.5), DNA molecules were extended about 10% longer and DNA extremities bound with CTAB-coated surfaces via electrostatic attraction. At pH 6.0, DNA molecules could be extended 30% longer on 0.2-mM CTAB-coated surfaces. CTAB cationic surfactant has both a hydrophobic motif and a positively charged group. So, CTAB-coated surfaces can bind DNA extremities via hydrophobic effect or electrostatic attraction at different pH values. It was also found that combing of DNA on CTAB-coated surfaces is reversible. The number of DNA base pairs binding to CTAB-coated surfaces was calculated.  相似文献   

5.
Two oppositely charged polysaccharides, alginate and a lactose-modified chitosan (chitlac), have been used to prepare dilute binary polymer mixtures at physiological pH (7.4). Because of the negative charge on the former polysaccharide and the positive charge on the latter, polyanion-polycation complex formation occurred. A complete miscibility between the two polysaccharides was attained in the presence of both high (0.15 M) and low (0.015 M) concentrations of simple 1:1 supporting salt (NaCl), as confirmed by turbidity measurements; phase separation occurred for intermediate values of the ionic strength (I). The binary solutions were further characterized by means of light scattering, specific viscosity, and fluorescence quenching measurements. All of these techniques pointed out the fundamental role of the electrostatic interactions between the two oppositely charged polysaccharides in the formation of nonstoichiometric polyelectrolyte soluble complexes in dilute solution. Fluorescence depolarization (P) experiments showed that the alginate chain rotational mobility was impaired by the presence of the cationic polysaccharide when 0.015 M NaCl was used. Moreover, upon addition of calcium, the P values of the binary polymer mixture in 0.015 M NaCl increased more rapidly than that of an alginate solution without chitlac, suggesting an efficient crowding of the negatively charged alginate chains caused by the polycation.  相似文献   

6.
The interactions between the polysaccharide alginate with charged ionic surfactants (anionic and cationic) in aqueous solution have been investigated using pyrene as a photophysical probe. Static fluorescence determinations have been used to obtain information about the new microenvironments arising by these interactions. Micropolarity studies using the I(1)/I(3) ratio of the vibronic bands and I(E)/I(M) ratio between the excimer and monomer emissions of pyrene shows the formation of hydrophobic domains. The interactions between the natural polyelectrolytes and the oppositely charged surfactants lead to the formation of pre-micelles at surfactant concentrations lower than the CMC of the surfactants. The aggregation process is assumed to be due to electrostatic attraction. On the other side, systems containing an anionic surfactant do not show the same behaviour at low concentrations.  相似文献   

7.
A kind of biocompatible derivative of chitosan, N-carboxyethylchitosan (CECh) with a degree of substitution of 0.21 (DS 0.21) was synthesized by a Michael addition reaction. The aggregation behavior of CECh in aqueous solution under the effects of pH, polymer concentration, as well as a gemini surfactant, was investigated by turbidity, zeta potential, fluorescence spectroscopy, viscosity, and surface tension measurements. In the pH range of 3-11, the macroscopic phase separation of CECh from water occurs near the isoelectric point (IEP) due to the intense electrostatic attraction, and the intermolecular interaction at pH 4 is stronger than that at pH 10 over the whole CECh concentration region. The critical aggregation concentration (CAC) of CECh/12-n-12 (n = 3, 6) in basic media is determined to be between 0.0010 and 0.0015 mmol/L, and the length of the surfactant spacer is found to play an important role in the interaction of 12-n-12 with CECh.  相似文献   

8.
Emulsions of 0.1 wt % corn oil-in-water containing oil droplets coated by beta-lactoglobulin (0.009 wt % beta-Lg, 5 mM phosphate buffer, pH 7.0) were prepared in the absence and presence of sodium alginate (0 or 0.004 wt %). The pH (3-7) and ionic strength (0-250 mM NaCl) of these emulsions were adjusted, and the particle charge, particle size, and creaming stability were measured. Alginate adsorbed to the beta-Lg-coated droplets from pH 3 to 6, which was attributed to electrostatic attraction between the anionic polymer and cationic patches on the droplet surfaces. Droplets coated by beta-Lg-alginate had better stability to flocculation than those coated by beta-Lg alone, especially around the isoelectric point of the adsorbed proteins and at low ionic strengths (< 100 mM NaCl). At pH 5, alginate molecules desorbed from the droplet surfaces at high salt concentrations due to weakening of the electrostatic attraction.  相似文献   

9.
The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M(CTAB)/M(TP)) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M(CTAB)/M(TP) = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate.  相似文献   

10.
Colloidal gas aphrons (CGA), which are surfactant stabilised microbubbles, have been previously applied for the recovery of proteins from model mixtures and a few studies have demonstrated the potential of these dispersions for the selective recovery of proteins from complex mixtures. However there is a lack of understanding of the mechanism of separation and forces governing the selectivity of the separation. In this paper a mechanistic study is carried out to determine the main factors and forces influencing the selectivity of separation of whey proteins with CGA generated from ionic surfactants. Two different separation strategies were followed: (i) separation of lactoferrin and lactoperoxidase by anionic CGA generated from a solution of sodium bis-(2-ethyl hexyl) sulfosuccinate (AOT); (ii) separation of beta-lactoglobulin by cationic CGA generated from a solution of cetyltrimethylammonium bromide (CTAB). Separation results indicate that electrostatic interactions are the main forces determining the selectivity however these could not completely explain the selectivities obtained following both strategies. Protein-surfactant interactions were studied by measuring the zeta potential changes on individual proteins upon addition of surfactant and at varying pH. Interestingly strongest electrostatic interactions were measured at those pH and surfactant to protein mass ratios which were optimum for protein separation. Effect of surfactant on protein conformation was determined by measuring the change in fluorescence intensity upon addition of surfactant at varying pH. Differences in the fluorescence patterns were detected among proteins which were correlated to differences in their conformational features which could in turn explain their different separation behaviour. The effect of conformation on selectivity was further proven by experiments in which conformational changes were induced by pre-treatment of whey (heating) and by storage at 4 degrees C. Overall it can be concluded that separation of proteins by ionic CGA is driven mainly by electrostatic interactions however conformational features will finally determine the selectivity of the separation with competitive adsorption having also an effect.  相似文献   

11.
The present study specifically aimed at preparing and characterizing semidilute binary polymer mixtures of alginate and chitlac which might find an application in the field of cell encapsulation. A polyanion, alginate, and a polycation, a lactose-modified chitosan, were mixed under physiological conditions (pH 7.4 and NaCl 0.15) and at a semidilute concentration avoiding associative phase separation. The mutual solubility was found to be dependent on the charge screening effect of the added NaCl salt, being prevented below 0.05 M NaCl. A comparison with the behavior of the polyanion (alginate) under the same experimental conditions revealed that both the viscosity and the relaxation times of the binary polymer solutions are strongly affected by the presence of the polycation. In particular, the occurrence of electrostatic interactions between the two oppositely charged polysaccharides led to a synergistic effect on the zero-shear viscosity of the solution, which showed a 4.2-fold increase with respect to that of the main component of the solution, i.e., alginate. Moreover, the relaxation time, calculated as the reciprocal of the critical share rate, markedly increased upon reducing the alginate fraction in the binary polysaccharide solution. However, the formation of the soluble complexes and the synergistic effect are reduced upon increasing the concentration of the 1:1 electrolyte. By containing a gel-forming polyanion (alginate, e.g., with Ca(2+) ions) and a bioactive polycation (chitlac, bearing a beta-linked D-galactose), the present system can be regarded as a first step toward the development of biologically active scaffold from polysaccharide mixtures.  相似文献   

12.
反胶束萃取血红蛋白的研究   总被引:2,自引:0,他引:2  
张亦飞  韩冬冰 《生物技术》1998,8(1):14-17,6
研究了CTAB-正辛醇-正庚烷交束溶液萃取牛血红蛋白(pHb)时、pH值、表面活性剂浓度、助表面活性剂浓度、离子种类和离子强度、溶剂比以及蛋白质浓度等因素对萃取效果的影响,并以蛋白质分子与表面活性剂分子间的相互作用以及反胶束大空间阻碍作用上进行了解释。研究表明,水相PH值在10.5 ̄12.5之间,KC1浓度为0.1mol/l,反胶束溶液中表面活性剂浓度为0.02mol/l,正辛醇与正庚烷之比为0.  相似文献   

13.
Zhang T  Liu H  Chen J 《Biotechnology progress》1999,15(6):1078-1082
Affinity Cibacron Blue 3GA (CB) dye in aqueous phase was directly transferred to the reversed micelles due to electrostatic interaction between anionic CB and cationic cetyltrimethylammonium bromide (CTAB). The bovine serum albumin (BSA) transfer to the reverse micelles increases significantly in a wide range of pH by the addition of a small amount of CB ( approximately 1.0-7.0% of the total surfactant concentration) to the aqueous phase. For pH < pI, the selectivity can be significantly improved with the presence of affinity CB because no BSA was extracted in the absence of CB. For backward extraction of BSA from the micellar phase with stripping aqueous solution, the addition of 2-propanol to the aqueous phase can recover almost all BSA (98.5%) extracted into the reverse micelles.  相似文献   

14.
In the extraction of alginate from brown seaweeds, the acid pre-extraction treatment has been considered by many authors as an essential step because it makes the alginate more readily soluble in an alkaline solution. At pilot plant level, extractions were made (i) using formalin treatment prior to the acid pre-extraction treatment (ii) using different acid treatments so the calcium ions exchanged varied from 83% to 4%. The use of formalin treatment gave a product with less color. During the acid pre-extraction treatment, it was possible to reduce the calcium exchanged from 33.4% to almost zero with a maximum reduction in alginate yield of 7%. The degree of acid treatment was positively correlated to calcium exchanged and yield but negatively correlated with alginate viscosity. Using strong acid conditions the viscosity was 168 mPa s, while mild acid conditions produced an alginate with 623 mPa s. The direct extraction from calcium alginate to sodium alginate is possible because strong alkaline conditions were used, pH 10 at 80 °C for two hours and with a low water volume. The best pre-extraction treatment to obtain an alginate with high viscoity is to hydrate the alga with 0.1% formalin overnight, then wash the alga once with hydrochloric acid at pH 4 using a batch system with continuous agitation during 15 min. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The present contribution deals with the preparation and characterization of ternary mixtures of polysaccharides with potential applications in the field of tissue engineering. Two natural polyanions, i.e., alginate and hyaluronic acid, and a polycation, a lactose-modified chitosan (chitlac), were mixed in dilute conditions. The miscibility between the three components was explored in the presence of different amounts of supporting simple salt. These analyses allowed to identify the experimental conditions avoiding polymer phase separation and leading to either solution of independent polymers or soluble nonstoichiometric interpolyelectrolyte complexes. The characterization of the interpolyelectrolyte complexes was tackled by means of viscometry, light scattering, fluorescence quenching, and energy transfer. The electrostatic interactions taking place among the different polyelectrolytes led to synergistic effects on the viscosity of the polymer mixtures which strongly depend on the ionic strength. It has been found that, starting from binary soluble complexes of alginate and chitlac, the addition of hyaluronan led to the dissolution of the complexes. At variance, the addition of alginate to a phase-separated binary mixture of hyaluronan and chitlac led to the formation of soluble complexes composed of all three polysaccharides and, eventually, to their dissolution. In addition, the results showed that at low ionic strength the overall properties of the ternary mixtures depend on their order of mixing.  相似文献   

16.
Electrostatic encapsulation and growth of plant cell cultures in alginate.   总被引:1,自引:0,他引:1  
The growth of callus tissue from African Violets, encapsulated in alginate using electrostatics, was investigated as well as the mechanism of alginate droplet formation. Alginate microbeads as small as 500 (+/-50) microns in diameter could be produced by electrostatic extrusion directly from a plastic syringe (1900 micron extrusion orifice), in the absence of a needle. Video analysis of the mechanism of electrostatic alginate droplet formation from the syringe showed the development of a Taylor cone-like droplet which extended to form a thin strand that then broke up into droplets. Autoclaving of the alginate/medium solution significantly reduced its viscosity, giving smaller beads. Calculated microbead diameters agreed well with experimental values. Callus tissue from leaf explants was successfully immobilized and cultured using electrostatic extrusion. Tissue immobilized using 4% alginate in medium and cultured on agar grew best, producing a complete plantlet within four months. The long-term aim is to develop an effective method for large production of artificial seeds.  相似文献   

17.
He P  Li M  Hu N 《Biopolymers》2005,79(6):310-323
With the isoelectric point at pH 7.4, hemoglobin (Hb) has net positive surface charges at pH 5.0 and overall negative charges at pH 9.0, and is essentially neutral at pH 7.0. The fifth-generation poly(propyleneimine) (PPI) dendrimer is usually positively charged in aqueous solution. The {PPI/Hb}n films under different pH conditions have been successfully fabricated on various solid surfaces by the layer-by-layer assembly technique, and the growth of films was monitored by ultraviolet-visible (UV-vis) spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). Not only was the negatively charged Hb at pH 9.0 alternately adsorbed with positively charged PPI onto solid substrates by electrostatic attraction between them, but the positively charged Hb at pH 5.0 was also successfully assembled with like charged PPI into layer-by-layer {PPI/Hb(pH 5.0)}n films. For the latter, the localized electrostatic interaction or the charge reversal of proteins on PPI surface may be the main driving force. For {PPI/Hb(pH 7.0)}n films, however, the hydrophobic/hydrophilic interaction may play a more important role in the assembly, making the amount of adsorbed Hb even less than that of {PPI/Hb(pH 5.0)}n films. For comparison, negatively charged catalase (Cat) at pH 8.0 was used to assemble layer-by-layer films with positive PPI, but {PPI/Cat}n films showed quite different properties from {PPI/Hb}n films. UV-vis and infrared (IR) spectroscopy, QCM, ellipsometry, and voltammetry were utilized to characterize the {PPI/protein}n films. The results suggest that the proteins in the multilayer films retain their near-native structure and display good voltammetric response for heme Fe(III)/Fe(II) redox couples at underlying pyrolytic graphite (PG) electrodes. Electrocatalysis of oxygen and hydrogen peroxide based on direct electrochemistry of heme proteins at {PPI/protein}n film electrodes was also demonstrated.  相似文献   

18.
The cationic surfactant, cetyl (hexadecyl) trimethylammonium bromide (CTAB), completely inactivates porcine heart cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) at concentrations (of surfactant) which do not affect the activity of the mitochondrial isoenzyme. These concentrations are close to, or higher than, the critical micelle concentration of CTAB. An increase in the ionic strength of the medium significantly retards the CTAB-induced inactivation of the cytoplasmic enzyme. The enzyme is also markedly protected against CTAB inactivation by NADH; L-malate on its own has no effect but a combination of NADH and L-malate affords greater protection than NADH alone. The CTAB inactivation is not reversed by dilution of the surfactant. The highly selective action of CTAB on the two malate dehydrogenases, which correlates well with their electrostatic charges, has been exploited for a simple and reliable differential assay of these isoenzymes. The anionic surfactant, sodium dodecyl sulphate (SDS), at concentrations well below the critical micelle concentration, inactivates both isoenzymes, but the mitochondrial enzyme is significantly more sensitive than its cytoplasmic counterpart. There is thus some correlation, though not as strong as with CTAB, between SDS inactivation and the charges of the two malat dehydrogenases. An increase in ionic strength has opposite effects on the two isoenzymes: the mitochondrial enzyme becomes more resistant and the cytoplasmic enzyme less so. Both isoenzymes are rendered more resistant to SDS by the inclusion of NADH. Inactivation of the enzymes caused by short exposure to SDS is largely reversed by dilution of the detergent, but longer exposure leads to progressive irreversible loss of activity. NADH very effectively protects the isoenzymes against irreversible inactivation. It is likely that a reversible phase of inactivation precedes an irreversible phase and that in the former phase SDS acts competitively with NADH. Both malate dehydrogenases possess considerable resistance to the nonionic detergent, Triton X-100.  相似文献   

19.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

20.
This work proposed a rapid and novel fluorescence‐sensing system using a complex of acridine orange (AO) and polystyrene sulfonate (PSS) to sensitively recognize and monitor cetyltrimethylammonium bromide (CTAB) in an aqueous medium. AO can interact with PSS and a complex is formed via electrostatic attraction and hydrophobic interaction. The fluorescence of AO is greatly quenched after the introduction of PSS. Upon its subsequent addition, CTAB can interact and form a complex with PSS because the electrostatic attraction between CTAB and PSS is much stronger than that between AO and PSS, which results in significant fluorescence recovery. Interestingly, the proposed method can be applied for the discrimination and detection of surfactants with different hydrocarbon chain lengths due to their different binding affinity toward PSS. The detection limit for CTAB is as low as 0.2 µg/mL and the linear range is from 0.5 to 3.5 µg/mL. Moreover, we applied the sensor to the successful detection of CTAB in water samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号