首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
该研究以蔗渣木质素和甲基丙烯酸为原料合成了pH敏感型蔗渣木质素/聚甲基丙烯酸水凝胶,对其合成条件、pH敏感性、溶胀-退溶胀性能以及对牛血清蛋白的控释等性质进行研究,并采用红外光谱、扫描电镜等对凝胶进行表征。结果表明:(1)对凝胶溶胀比影响的因素由大到小依次为甲基丙烯酸用量、交联剂用量、催化剂用量、反应的温度、木质素用量。当甲基丙烯酸单体浓度为1.75 mol·L~(-1)、木质素浓度为25 g·L~(-1)、交联剂浓度为3.25×10~(-2)mol·L~(-1)、引发剂浓度为1.25×10~(-2)mol·L~(-1)、反应温度为65℃时,所得水凝胶在模拟肠液中的溶胀比最大(28.16 g·g~(-1))。与不加木质素的聚甲基丙烯酸水凝胶相比,蔗渣木质素/聚甲基丙烯酸水凝胶的溶胀比有所下降,但其敏感pH由4~5碱移至6~8。(2)蔗渣木质素/聚甲基丙烯酸水凝胶的溶胀—退溶胀可逆性受组成的影响较大,但相对于聚甲基丙烯酸水凝胶,蔗渣木质素/聚甲基丙烯酸水凝胶对pH值的敏感响应性更强、响应速率更快,同时能在更短时间内达到溶胀平衡。(3)加入木质素可以提高水凝胶对牛血清蛋白的负载量,所试验的蔗渣木质素/聚甲基丙烯酸水凝胶样品对牛血清蛋白的最大负载量可达577 mg·g~(-1)。(4)牛血清蛋白在12 h后基本可达释放平衡;在模拟胃液中,牛血清蛋白的释放率仅10%,而在模拟肠液中释放率达92%。pH响应型蔗渣木质素/聚甲基丙烯酸水凝胶可以作为口服型蛋白类药物的潜在载体。  相似文献   

2.
A hyaluronic acid-based anionic nanogel formed by self-assembly of cholesteryl-group-bearing HA is designed for protein delivery. The HA nanogel spontaneously binds various types of proteins without denaturation, such as recombinant human growth hormone, erythropoietin, exendin-4, and lysozyme. The HA nanogel shows unique colloidal properties, in particular that an injectable hydrogel is formed by salt-induced association of the HA nanogel. A pharmacokinetic study in rats shows that an in situ gel formulation, prepared by simply mixing rhGH and HA nanogel in phosphate buffer, maintains plasma rhGH levels within a narrow range over one week. Therefore, HA nanogels offer a simple method for easy formulation of therapeutic proteins and are effective for sustained protein release systems.  相似文献   

3.
A hydrogel membrane containing immobilized ligands and receptors was synthesized and investigated for the controlled diffusion of test proteins (cytochrome C and hemoglobin). Both Cibacron blue (ligand) and lysozyme (receptor) were covalently linked to dextran molecules that were subsequently crosslinked to form a gel. The resulting stable hydrogels contained both covalent and affinity crosslinks such that their intrinsic porosities were sensitive to competitive displacers of the affinity interaction between lysozyme and Cibacron blue. Transport experiments in a twin chamber diffusion cell showed that as NAD was added to the donor side, the dissociation of the binding sites between the Cibacron blue and the lysozyme led to an increase in protein diffusion through the hydrogel. The results showed that addition of NAD caused a saturable concentration-dependent increase in the transport of both cytochrome C and hemoglobin. This effect was shown to be both specific and reversible.  相似文献   

4.
In order to account for the time courses of both evoked release and facilitation, in the framework of the Ca2+ hypothesis, Fogelson and Zucker (1985,Biophys. J. 48, 1003–1017) suggested treating diffusion of Ca2+, once it enters through the Ca2+ channels, as a three-dimensional process (three-dimensional diffusion model). This model is examined here as a refined version of the “Ca2+-theory” for neurotransmitter release. The three-dimensional model was suggested to account for both the time course of release and that of facilitation. As such, it has been examined here as to its ability to predict the dependence of the amplitude and time course of facilitation under various experimental conditions. It is demonstrated that the three-dimensional diffusion model predicts the time course of facilitation to be insensitive to temperature. It also predicts the amplitude and time course of facilitation to be independent of extracellular Ca2+ concentration. Moreover, it predicts that inhibition of the [Na+]o↔[Ca2+]i exchange does not alter facilitation. These predictions are not upheld by the experimental results. Facilitation is prolonged upon reduction in temperature. The amplitude of facilitation declines and its duration is prolonged upon increase in extracellular Ca2+ concentration. Finally, inhibition of the [Na+]o↔[Ca2+]i exchange prolongs facilitation but does not alter the time course of evoked release after an impulse.  相似文献   

5.
Summary The diffusion of an IgG was measured from a number of carrageenan and alginate gels. Variations in diffusion rates were high, ranging from no diffusion in a food grade carrageenan to a rate approaching the maximum theoretical value in a low viscosity alginate. Differences in the mechanical stability of beads were also observed.  相似文献   

6.
The antibody bevacizumab (Avastin) has been used clinically to treat intraocular neovascular diseases based on its antivascular endothelial growth factor (VEGF) character. The anti-VEGF strategy for retinal neovascular diseases is limited by the short half-life of bevacizumab and thus requires frequent injections. This Article reports the sustained release of bevacizumab from a biocompatible material that is composed of a triblock copolymer of poly(2-ethyl-2-oxazoline)-b-poly(ε-caprolactone)-b-poly(2-ethyl-2-oxazoline) (PEOz-PCL-PEOz). The amphiphilic PEOz-PCL-PEOz triblock copolymer was synthesized in three steps. First, the PEOz was polymerized by methyl p-toluenesulfonate and 2-ethyl-2-oxazoline (EOz), and the living end was terminated by potassium hydroxide methanolic solution. Subsequently, the hydroxyl-PEOz was used as a macroinitiator for the ring-opening polymerization of ε-caprolactone using a Tin(II) octoate catalyst to synthesize the telechelic hydroxylated PEOz-PCL. Finally, the PEOz-PCL-PEOz triblock copolymer was obtained using the 1,6-hexamethylene diisocyanateas a coupling reagent. The PEOz-PCL-PEOz was chemically and molecularly characterized by GPC, (1)H NMR, and FTIR, and its aqueous solution (ECE hydrogel) showed a reversible sol (room temperature)-gel (physiological temperature) phase transition, which serves as an easy antibody-packing system with extended release. The biodegradability of ECE hydrogel was assessed by the porosity formation at different periods by scanning electron microscopy. The ECE hydrogel had no in vitro cytotoxicity on the human retinal pigment epithelial cell line by flow cytometry. The histomorphology and electrophysiology of the rabbit neuroretina were preserved after 2 months of intravitreal injection. In conclusion, the ECE hydrogel has a temperature-sensitive sol-gel phase transition and is effective in vitro. Its intraocular biocompatibility demonstrated its great potential to be widely used in biomedical applications for extended drug release.  相似文献   

7.
We developed a facile and quick ethanol-based method for preparing silk nanoparticles and then fabricated a biodegradable and biocompatible dual-drug release system based on silk nanoparticles and the molecular networks of silk hydrogels. Model drugs incorporated in the silk nanoparticles and silk hydrogels showed fast and constant release, respectively, indicating successful dual-drug release from silk hydrogel containing silk nanoparticles. The release behaviors achieved by this dual-drug release system suggest to be regulated by physical properties (e.g., β-sheet contents and size of the silk nanoparticles and network size of the silk hydrogels), which is an important advantage for biomedical applications. The present silk-based system for dual-drug release also demonstrated no significant cytotoxicity against human mesenchymal stem cells (hMSCs), and thus, this silk-based dual-drug release system has potential as a versatile and useful new platform of polymeric materials for various types of dual delivery of bioactive molecules.  相似文献   

8.
Poly(ethylene) glycol (PEG) hydrogels have been successfully used to entrap mammalian cells for potential high throughput drug screening and biosensing applications. To determine the influence of PEG composition on the production of cellular protein, mammalian hepatocytes were maintained in PEG hydrogels for 7 days. Total cell viability, total protein production, and the production of two specific proteins, albumin and fibronectin, were monitored. Studies revealed that while PEG composition has no effect on cell viability, increasing amounts of PEG in the hydrogel decrease the amount of protein production by the cells after 7 days from 1.0 x 10(5) +/- 1.7 x 10(4) to 5.2 x 10(3) +/- 1.3 x 10(3) g accumulated protein/mL/million cells. Additionally, cells entrapped in PEG hydrogels produce greater amounts of protein than traditional monolayer culture (1.5 x 10(3) +/- 1.9 x 10(2) g accumulated protein/mL/million cells after 7 days). The addition of the synthetic peptide RGD to 10% PEG hydrogels altered the production of the proteins albumin and fibronectin. Hydrogels with the RGD sequence produced 287 +/- 27 ng/mL/million cells albumin after 7 days, an order of magnitude greater than monolayer cultures, whereas cells in hydrogels without the RGD sequence produced undetectable levels of albumin. Conversely, cells entrapped in 10% PEG hydrogels without the RGD sequence produced 1014 +/- 328 ng/mL/million cells fibronectin after 7 days, whereas 10% PEG hydrogels with the RGD sequence produced 200 +/- 58 ng/mL/million cells fibronectin after 7 days.  相似文献   

9.
10.
Kim J  Lee Y  Singha K  Kim HW  Shin JH  Jo S  Han DK  Kim WJ 《Bioconjugate chemistry》2011,22(6):1031-1038
In recent years, numerous research activities have been devoted to the controlled release of nitric oxide (NO) due to its potential as a restenosis inhibitor which inhibits the proliferation of vascular smooth muscle cells, the apoptosis of vascular endothelial cells, and aggregation of platelets. This work has demonstrated the development of a novel NO-conjugated gel system comprising of thermosensitive Pluronic F127, branched polyethylenimine (BPEI), and diazeniumdiolates (NONOates). Synthesis of conjugated Pluronic-BPEI-NONOates involved coupling of activated F127 to BPEI followed by the installation of NONOates at the secondary amine sites of branched PEI backbone under high pressure. NO-conjugated gel system, F127-BPEI-NONOates, reduced the initial burst of NO release and prolonged NO release. Furthermore, F127-BPEI-NONOates polymer coated on cell culture dish displayed much higher increase of endothelial cell proliferation and reduction of smooth muscle cell proliferation than that exhibited by non-NO releasing control. Such an NO-releasing device can operate locally and has a great potential in several biomedical applications due to high biocompatibility imparted by the conjugated F127.  相似文献   

11.
12.
A N,N-dimethylacrylamide-based hydrogel (2) with the new cross-linker (ethylenedioxy) bis[2,2'-(N-acryloylamino)ethane] (1) has been prepared, and its physicochemical properties in aqueous solution were studied. Three different native proteins (lysozyme, bovine serum albumin, and rabbit IgG) were encapsulated within the polymeric matrix 2, and the kinetics of their release from the swollen hydrogel were determined. The rate of protein release exhibits a clear dependence on both the molecular weight of the protein and the amount of cross-linker utilized to prepare the hydrogel. This is reflected by the fact that the low molecular weight proteins are released at an increased rate versus higher molecular weight proteins. In addition a greater amount of protein is released from the hydrogels with a lower percentage of cross-linker. The polymerization procedure used in this study is sufficiently mild to safeguard the functional integrity of attendant biomolecules as determined by the retention of catalytic activity of encapsulated alpha-chymotrypsin and aldolase catalytic antibody 38C2. The potential utility of these hydrogels for the controlled release of bioactive agents in vivo is strengthened by both their lack of toxicity against human dermal fibroblasts and their lack of immunogenicity in mice.  相似文献   

13.
This protocol describes the core methodology for the fabrication of bar-coded hydrogel microparticles, the capture and labeling of protein targets and the rapid microfluidic scanning of particles for multiplexed detection. Multifunctional hydrogel particles made from poly(ethylene glycol) serve as a sensitive, nonfouling and bio-inert suspension array for the multiplexed measurement of proteins. Each particle type bears a distinctive graphical code consisting of unpolymerized holes in the wafer structure of the microparticle; this code serves to identify the antibody probe covalently incorporated throughout a separate probe region of the particle. The protocol for protein detection can be separated into three steps: (i) synthesis of particles via microfluidic flow lithography at a rate of 16,000 particles per hour; (ii) a 3-4-h assay in which protein targets are captured and labeled within particles using an antibody sandwich technique; and (iii) a flow scanning procedure to detect bar codes and quantify corresponding targets at rates of 25 particles per s. By using the techniques described, single- or multiple-probe particles can be reproducibly synthesized and used in customizable multiplexed panels to measure protein targets over a three-log range and at concentrations as low as 1 pg ml(-1).  相似文献   

14.
15.
In this investigation, the fabrication, physico-chemical and biological characterization of a novel smart hydrogel had been evaluated for its potentials in effective controlling protein delivery. The hydrophilic pachyman-based hydrogel was generated facilely by crosslinking hydrosoluble carboxymethyl pachyman (CMP) with epichlorohydrin (ECH). The ECH concentration possessing maximum (99.7%) encapsulation efficiency and the most appropriate swelling characteristics was found to be 1.25% (w/v). The resultant hydrogel exhibited swelling ratios most favorable for drug release in simulated intestinal media. It could release two model protein drugs (bovine serum albumin and lysozyme) in the controlled manner and with full preservation of the protein stability and enzymatic activity. Importantly, the ECH-CMP hydrogel was confirmed to be biocompatible and biodegradable. From these findings, we were able to conclude that the synthesized pachyman-based hydrogel would be a promising delivery carrier candidate for site-specific delivery of protein drugs.  相似文献   

16.
In this article, modified κ-carrageenan hydrogel nanocomposites were synthesized to increase the release ability of carrageenan hydrogels under gastrointestinal conditions. The effect of MgO nanoparticle loading in a model drug (methylene blue) release is investigated. Characterization of hydrogels were carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Differential Scanning Calorimetry (DSC). Genipin was used to increase the delivery performance in gastrointestinal tract delivery by decreasing release in simulated stomach conditions and increasing release in simulated intestine conditions. It is shown that the amount of methylene blue released from genipin-cross-linked nanocomposites can be 67.5% higher in intestine medium and 56% lower in the stomach compared to κ-carrageenan hydrogel. It was found that by changing the nanoparticle loading and genipin concentration in the composite, the amount of drug released can be monitored. Therefore, applying nanoparticles appears to be a potential strategy to develop controlled drug delivery especially in gastrointestinal tract studies.  相似文献   

17.
Tian K  Shao Z  Chen X 《Biomacromolecules》2010,11(12):3638-3643
A natural electroactive protein hydrogel was prepared from soy protein isolate (SPI) solution by cross-linking with epichlorohydrin. Under electrical stimulus, such SPI hydrogel quickly bends toward one electrode, showing a good electroactivity. Because of its amphoteric nature, the SPI hydrogel bends either toward the anode (pH < 6) or cathode (pH > 6), depending on the pH of the electrolyte solution. Other factors, such as electric field strength, ionic strength and gel thickness also influence the electromechanical behavior of the SPI hydrogels. Moreover, this SPI hydrogel exhibits a good electroactive behavior under strong acidic (pH = 2 - 3) or basic (pH = 11 - 12) solutions, which is a significant improvement over two other kinds of natural electroactive hydrogels, i.e., chitosan/carboxymethylcellulose and chitosan/carboxymethylchitosan hydrogel, which we reported previously. The wide pH range and good electroactivity of this natural protein hydrogel suggests its great potential for microsensor and actuator applications, especially in the biomedical field, and also to increase the scope of natural polymer-based electroactive hydrogels.  相似文献   

18.
A novel liposome/hydrogel soft nanocomposite was explored as a controlled drug delivery system. A P2VP-PAA-PnBMA biocompatible, pH-responsive triblock terpolymer was used as an injectable gelator, entrapping PC/Chol liposomes loaded with calcein as hydrophilic model drug. The composite hydrogel was formed in vitro through a pH-induced sol-gel transition by dialysis against buffer under physiological conditions and at polymer concentration as low as 1 wt %. Excellent control of the calcein release was achieved just by adjusting the gelator concentration; that is, from 1 to 1.5 wt %, the drug release period was significantly prolonged from 14 to 32 days.  相似文献   

19.
The electrodeposition of hydrogels provides a programmable means to assemble soft matter for various technological applications. We report an anodic method to deposit hydrogel films of the aminopolysaccharide chitosan. Evidence suggests the deposition mechanism involves the electrolysis of chloride to generate reactive chlorine species (e.g., HOCl) that partially oxidize chitosan to generate aldehydes that can couple covalently with amines (presumably through Schiff base linkages). Chitosan's anodic deposition is controllable spatially and temporally. Consistent with a covalent cross-linking mechanism, the deposited chitosan undergoes repeated swelling/deswelling in response to pH changes. Consistent with a covalent conjugation mechanism, proteins could be codeposited and retained within the chitosan film even after detergent washing. As a proof-of-concept, we electroaddressed glucose oxidase to a side-wall electrode of a microfabricated fluidic channel and demonstrated this enzyme could perform electrochemical biosensing functions. Thus, anodic chitosan deposition provides a reagentless, single-step method to electroaddress a stimuli-responsive and biofunctionalized hydrogel film.  相似文献   

20.
Wang D  Cheng D  Guan Y  Zhang Y 《Biomacromolecules》2011,12(3):578-584
Organ printing is an alternative to the classic scaffold-based tissue engineering approach in which functional living macrotissues and organ constructs are fabricated by assembly of the building blocks: microtissue spheroids. However, the method for scalable fabrication of cell spheroids does not exist yet. We propose here that it may be a suitable one to generate cell spheroids in thermoreversible hydrogel scaffold, followed by liquefying the scaffold and releasing the generated spheroids. We show that concentrated poly(N-isopropylacrylamide-co-acrylic acid) microgel dispersions solidify upon heating and liquefy upon cooling. A hysteresis in the cooling process was observed and explained by the slow kinetics of the dissolution of the aggregated polymer chains in the cooling process due to additional intra- and interchain interactions. Hep G2 cells are seeded by simple mixing the cells with the microgel dispersions at room temperature. Cell/scaffold constructs form in situ when heated to 37 °C. The cells proliferate and form multicellular spheroids. When brought back to room temperature, the hydrogel scaffolds liquefy, thus, releasing the generated cell spheroids. The released spheroids can attach on the cell culture plate, disassemble, and spread on the substrate, confirming the cell viability. The whole process is carried out under mild conditions and does not involve any toxic additives, which may introduce injury to the cells or DNA. It is scalable and may meet the need for large scale fabrication of cell spheroids for organ printing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号