首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovalbumin, which contains one intrachain disulfide bond and four cysteine sulfhydryls, was reduced with dithiothreitol under non-denaturing conditions, and its conformation and stability were compared with those of the disulfide-bonded form. The CD spectrum in the far-UV region revealed that the overall conformation of the reduced form is similar to that of the disulfide-bonded one. Likewise, the inaccessibility to trypsin and the non-reactivity of the four cysteine sulfhydryls, exhibited by the native disulfide-bonded ovalbumin, were still retained in the disulfide-reduced form. Thus, the reduced ovalbumin appeared to substantially take the native-like conformation. However, the near-UV CD spectrum slightly differed between the native and disulfide-reduced forms. Protein alkylation with a fluorescent dye and subsequent sequence analysis showed that the two sulfhydryls (Cys73 and Cys120) originating from the disulfide bond are highly reactive in the reduced form. Furthermore, upon proteolysis with subtilisin, the N-terminal side of Cys73 was cleaved in the reduced form, but not in the disulfide-bonded one. Upon heat denaturation, the transition temperature of the reduced form was lower, by 6.8 degrees C, than that of the disulfide-bonded one. Thus, we concluded that ovalbumin has a native-like conformation in its disulfide-reduced form, but that the local conformation of the reduced form fluctuates more than that of the disulfide-bonded one. Such local destabilization may be related to the decreased stability against heat denaturation.  相似文献   

2.
Ovalbumin assumes a highly ordered molten-globule conformation at pH 2.2. To investigate whether or not such structural nature is related to the existence of an intrachain native disulfide bond, the structural characteristics of disulfide-reduced ovalbumin at the acidic pH were compared with those of the native disulfide-intact protein by a variety of analytical approaches. The disulfide-reduced protein was found to assume a partially denatured molten globule-like conformation similar to the disulfide-intact counterpart as analyzed by the CD and intrinsic tryptophan fluorescence spectra and by the binding of a hydrophobic probe of anilino-1-naphthalene-8-sulfonate. The results from size-exclusion chromatography also showed that the disulfide-reduced and disulfide-intact proteins have essentially the same compact, native-like hydrodynamic volume. The disulfide-reduced protein was, however, highly sensitive to proteolysis by pepsin at the acidic pH under the proteolytic conditions in which the disulfide-intact protein was almost completely resistant. Furthermore, on a differential scanning calorimeter analysis the disulfide-reduced protein had an endothermic transition at a much lower temperature (Tm = 48.5 degrees C) than the disulfide-intact protein (Tm = 57.2 degrees C). Taken together, we concluded that the intrachain disulfide bond should not be directly related to the highly ordered molten-globule conformation of ovalbumin, but that its conformational stability depends on the presence of the disulfide bond.  相似文献   

3.
A previous report (Hirose, M., Akuta, T., and Takahashi, N. (1989) J. Biol. Chem. 264, 16867-16872) has shown that for the efficient oxidative refolding of disulfide-reduced ovotransferrin, a preincubation under reduced conditions at a low temperature is essential. To study the renaturation pathway, the disulfide-reduced N-terminal half-molecule of ovotransferrin was analyzed by CD spectrum. The reduced protein was found to take, at low temperatures, a partially folded conformation that can be distinguished from both the native and denatured states. The folded protein was in a metastable state with delta GD value of 2.2-2.8 kcal/mol at 6 degrees C. The conformation was variable depending on temperature conditions; its stability was decreased at a lower temperature (1.0-1.2 kcal/mol at 0 degrees C). Subsequent reoxidation at 6 degrees C by oxidized glutathione led efficiently the reduced protein to the correctly renatured form having the iron-binding capacity, indicating that the partially folded state is the immediate precursor to subsequent oxidative refolding.  相似文献   

4.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

5.
The non-covalent homodimer formed by the C-terminal domains of the IgG1 heavy chains (C(H)3) is the simplest naturally occurring model system for studying immunoglobulin folding and assembly. In the native state, the intrachain disulfide bridge, which connects a three-stranded and a four-stranded beta-sheet is buried in the hydrophobic core of the protein. Here, we show that the disulfide bridge is not required for folding and association, since the reduced C(H)3 domain folds to a dimer with defined secondary and tertiary structure. However, the thermodynamic stability of the reduced C(H)3 dimer is much lower than that of the oxidized state. This allows the formation of disulfide bonds either concomitant with folding (starting from the reduced, denatured state) or after folding (starting from the reduced dimer). The analysis of the two processes revealed that, under all conditions investigated, one of the cysteine residues, Cys 86, reacts preferentially with oxidized glutathione to a mixed disulfide that subsequently interacts with the less-reactive second thiol group of the intra-molecular disulfide bond. For folded C(H)3, the second step in the oxidation process is slow. In contrast, starting from the unfolded and reduced protein, the oxidation reaction is faster. However, the overall folding reaction of C(H)3 during oxidative folding is a slow process. Especially, dimerization is slow, compared to the association starting from the denatured oxidized state. This deceleration may be due to misfolded conformations trapped by the disulfide bridge.  相似文献   

6.
Ovalbumin, a member of the serpin superfamily, contains one cystine disulfide (Cys73-Cys120) and four cysteine sulfhydryls (Cys11, Cys30, Cys367, and Cys382) in the native state. To investigate the folding mechanism of ovalbumin, a urea-denatured disulfide isomer with a mispaired disulfide Cys367-Cys382 (D[367-382]) and its derivative (D[367-382/CM-73]) in which a native cystine counterpart of Cys73 is blocked by carboxymethylation were produced. Both the denatured isomers refolded within an instrumental dead time of 4 ms into an initial burst intermediate IN with partially folded conformation. After the initial burst phase, most of the D[367-382] molecules further refolded into the native form. In contrast, upon dilution of D[367-382/CM-73] with the refolding buffer, the protein stayed in the IN state as a stable form, which displayed a partial regain of the native secondary structure and a compact conformation with a similar Stokes radius to the native form. The structural characteristics of IN were clearly differentiated from those of an equilibrium intermediate IA that was produced by dilution with an acidic buffer of urea-denatured ovalbumin; IA showed much more hydrophobic dye binding and a larger Stokes radius than the IN state, despite their indistinguishable far-UV circular dichroic spectra. The non-productive nature of IA highlighted the importance of a compact conformation of the IN state for subsequent native refolding. These observations were consistent with a refolding model of ovalbumin that includes the regain of the partial secondary structure and of the compactness of overall conformation in an initial burst phase before the subsequent native refolding.  相似文献   

7.
The recombinant ovalbumin produced in Escherichia coli was purified from the cytoplasmic fraction and analyzed for its chemical and conformational properties. The recombinant ovalbumin displayed almost exactly the same circular dichroism and intrinsic tryptophan fluorescence spectra as egg white ovalbumin. As in the egg white protein, four cysteine sulfhydryls and one cystine disulfide were contained in the recombinant protein, according to the results of amino acid analyses; the disulfide bond was found by a peptide mapping analysis to correspond to the native cystine, Cys73-Cys120. According to a gel electrophoresis analysis, the presence of the disulfide bond was accounted for by specific oxidation of the corresponding cysteine residues during purification of the cytoplasmic protein. Unlike the identity in the conformational and peptide structures, none of the post-translational modifications (N-terminal acetylation, phosphorylation, and glycosylation) that are known with egg white ovalbumin were detected in the recombinant protein. The recombinant ovalbumin was transformed into a thermostabilized form in a similar manner to the transformation of egg white protein into S-ovalbumin; alkaline treatment increased the temperature for thermostability by 8.7 degrees C. These data strongly suggest that the post-translational modifications of ovalbumin are not related to the formation mechanism for S-ovalbumin.  相似文献   

8.
The conformation of the fully disulfide-reduced state of human serum albumin was investigated by tryptophan fluorescence spectrum, CD analyses, and size-exclusion chromatography. Both the reduction of the native disulfide-bonded form under nondenaturing conditions and the refolding of the urea-denatured disulfide-reduced form under reduced conditions yielded almost exactly the same disulfide-reduced state with partially folded unique conformation that was clearly distinguished from either the native or fully denatured state. In addition, the interconversion between the urea-denatured reduced form and the partially folded reduced form was reversible with each other; by reoxidation, the partially folded reduced form was converted to the disulfide-bonded form. The conformation of disulfide-reduced serum albumin was highly variable depending on pH and ionic strength conditions. Thus, we concluded that the disulfide-reduced state with partially folded variable conformation is involved in the reversible interconversion between the denatured reduced form and the native disulfide-bonded form of human serum albumin.  相似文献   

9.
The folding of heat-denatured ovalbumin, a non-inhibitory serpin with a molecular size of 45 kDa, was examined. Ovalbumin was heat-denatured at 80 degrees C under nonreducing conditions at pH 7.5 and then cooled either slowly or rapidly. Slow cooling allowed the heat-denatured ovalbumin to refold to its native structure with subsequent resistance to digestion by trypsin. Upon rapid cooling, by contrast, the heat-denatured molecules assumed the metastable non-native conformations that were susceptible to trypsin. The non-native species were marginally stable for several days at a low temperature, but the molecules were transformed slowly into the native conformation. Considering data from size-exclusion chromatography and from analyses of CD, intrinsic tryptophan fluorescence, and adsorption of the dye 1-anilinonaphthalene-8-sulfonate, we postulated that the non-native species that accumulated upon rapid cooling were compact but structureless globules with disordered side chains collectively as a folding intermediate. Temperature-jumped CD experiments revealed biphasic kinetics for the refolding process of heat-denatured ovalbumin, with the features of increasing and subsequently decreasing amplitude of the rapid and the slow phases, respectively, with the decrease in folding temperature. The temperature dependence of the refolding kinetics indicated that the yield of renaturation was maximal at about 55 degrees C. These findings suggested the kinetic partitioning of heat-denatured ovalbumin between alternative fates, slow renaturation to the native state and rapid collapse to the metastable intermediate state. Analysis of disulfide pairing revealed the formation of a scrambled form with non-native disulfide interactions in both the heat-denatured state and the intermediate state that accumulated upon rapid cooling, suggesting that non-native disulfide pairing is responsible for the kinetic barriers that retard the correct folding of ovalbumin.  相似文献   

10.
Ovalbumin, a member of the serpin superfamily, is transformed into a thermostabilized form, S-ovalbumin, during storage of shell eggs or by an alkaline treatment of the isolated protein (DeltaT(m)=8 degrees C). As structural characteristics of S-ovalbumin, three serine residues (Ser164, Ser236 and Ser320) take the D-amino acid residue configuration, while the conformational change from non-thermostabilized native ovalbumin is very small. To assess the role of the structural characteristics on protein thermostabilization, ovalbumin and S-ovalbumin were denatured to eliminate the conformational modulation effects and then refolded. The denatured ovalbumin and S-ovalbumin were correctly refolded into the original non-denatured forms with the corresponding differential thermostability. There was essentially no difference in the disulfide structures of the native and refolded forms of ovalbumin and S-ovalbumin. These data are consistent with the view that the configuration inversion, which is the only chemical modification directly detected in S-ovalbumin so far, plays a central role in ovalbumin thermostabilization. The rate of refolding of S-ovalbumin was greater than that of ovalbumin, indicating the participation, at least in part, of an increased folding rate for thermodynamic stabilization.  相似文献   

11.
Our previous study [Takahashiet al., J. Biochem., 109, 846–851 (1991)] has shown that the disulfide-reduced form of ovalbumin was proteolyzed by subtilisin into three major fragments. It was investigated whether or not these three fragments would be folded into one molecule. Gel permeation and ion-exchange chromatography indicated that the three fragments were eluted in a single peak. The proteolyzed protein had a CD spectrum that was almost indistinguishable from the disulfide-reduced, non-proteolyzed, form of ovalbumin. Differential scanning calorimetry, however, revealed, that the proteolyzed ovalbumin was denatured at a lower temperature than that of the disulfide-reduced, non-proteolyzed. protein. Thus, it is concluded that the three fragments were folded into a native-like conformation with decreased stability. Chemical analyses of the fragments purified by reverse-phase HPLC revealed that there was a cleavage site in the disulfide-reduced form of ovalbumin, at least at the amino-terminal side of Cys73, in addition to the well-known cleavage sites in plakalbumin.  相似文献   

12.
Salamanca S  Li L  Vendrell J  Aviles FX  Chang JY 《Biochemistry》2003,42(22):6754-6761
The leech carboxypeptidase inhibitor (LCI) is a 66-amino acid protein, containing four disulfides that stabilize its structure. This polypeptide represents an excellent model for the study and understanding of the diversity of folding pathways in small, cysteine-rich proteins. The pathway of oxidative folding of LCI has been elucidated in this work, using structural and kinetic analysis of the folding intermediates trapped by acid quenching. Reduced and denatured LCI refolds through a rapid, sequential flow of one- and two-disulfide intermediates and reaches a rate-limiting step in which a mixture of three major three-disulfide species and a heterogeneous population of non-native four-disulfide (scrambled) isomers coexist. The three three-disulfide intermediates have been identified as major kinetic traps along the folding pathway of LCI, and their disulfide structures have been elucidated in this work. Two of them contain only native disulfide pairings, and one contains one native and two non-native disulfide bonds. The coexistence of three-disulfide kinetic traps adopting native disulfide bonds together with a significant proportion of fully oxidized scrambled isomers shows that the folding pathway of LCI features properties exhibited by both the bovine pancreatic trypsin inhibitor and hirudin, two diverse models with extreme folding characteristics. The results further demonstrate the large diversity of disulfide folding pathways.  相似文献   

13.
The burial of native disulfide bonds, formed within stable structure in the regeneration of multi-disulfide-containing proteins from their fully reduced states, is a key step in the folding process, as the burial greatly accelerates the oxidative folding rate of the protein by sequestering the native disulfide bonds from thiol-disulfide exchange reactions. Nevertheless, several proteins retain solvent-exposed disulfide bonds in their native structures. Here, we have examined the impact of an easily reducible native disulfide bond on the oxidative folding rate of a protein. Our studies reveal that the susceptibility of the (40-95) disulfide bond of Y92G bovine pancreatic ribonuclease A (RNase A) to reduction results in a reduced rate of oxidative regeneration, compared with wild-type RNase A. In the native state of RNase A, Tyr 92 lies atop its (40-95) disulfide bond, effectively shielding this bond from the reducing agent, thereby promoting protein oxidative regeneration. Our work sheds light on the unique contribution of a local structural element in promoting the oxidative folding of a multi-disulfide-containing protein.  相似文献   

14.
Cationization is a powerful strategy for internalizing a protein into living cells. On the other hand, a reversibly cationized denatured protein through disulfide bonds is not only soluble in water but also able to fold to the native conformation in vitro. When these advantages in cationization were combined, we developed a novel method to deliver a denatured protein into cells and simultaneously let it fold to express its function within cells. This "in-cell folding" method enhances the utility of recombinant proteins expressed in Escherichia coli as inclusion bodies; that is, the recombinant proteins in inclusion bodies are solubilized by reversible cationization through cysteine residues by disulfide bonds with aminopropyl methanethiosulfonate or pyridyldithiopropionylpolyethylenimine and then incubated with cells without an in vitro folding procedure. As a model protein, we investigated human tumor-suppressor p53. Treatment of p53-null Saos-2 cells with reversibly cationized p53 revealed that all events examined as indications of the activation of p53 in cells, such as reduction of disulfide bonds followed by tetramer formation, localization into the nucleus, induction of p53 target genes, and induction of apoptosis of cells, occurred. These results suggest that reversible cationization of a denatured protein through cysteine residues is an alternative method for delivery of a functional protein into cells. This method would be very useful when a native folded protein is not readily available.  相似文献   

15.
The formation of native disulfide bonds is an essential event in the folding and maturation of proteins entering the secretory pathway. For native disulfides to form efficiently an oxidative pathway is required for disulfide bond formation and a reductive pathway is required to ensure isomerization of non-native disulfide bonds. The oxidative pathway involves the oxidation of substrate proteins by PDI, which in turn is oxidized by endoplasmic reticulum oxidase (Ero1). Here we demonstrate that overexpression of Ero1 results in the acceleration of disulfide bond formation and correct protein folding. In contrast, lowering the levels of glutathione within the cell resulted in acceleration of disulfide bond formation but did not lead to correct protein folding. These results demonstrate that lowering the level of glutathione in the cell compromises the reductive pathway and prevents disulfide bond isomerization from occurring efficiently, highlighting the crucial role played by glutathione in native disulfide bond formation within the mammalian endoplasmic reticulum.  相似文献   

16.
The malignant trophoblastic cell line JAR was used as a model system to study protein folding in intact cells. We have used this model previously to identify conformational intermediates in the production of an assembly-competent form of the human chorionic gonadotropin beta subunit (Ruddon, R. W., Krzesicki, R. F., Norton, S. E., Beebe, J. S., Peters, B. P., and Perini, F. (1987) J. Biol. Chem. 262, 12533-12540). The earliest biosynthetic precursor of the human chorionic gonadotropin beta subunit detectable in JAR cells pulse labeled for 2 min is p beta 1, a form that lacks half of the six intrachain disulfide bonds observed in the fully processed dimer form of beta and that does not combine with the alpha subunit. p beta 1 is rapidly (t1/2 approximately 4 min) converted into p beta 2, which has a full complement of intrachain disulfide bonds and does combine with the alpha subunit. In this study, we have identified the three late forming disulfide bonds involved in the transition of p beta 1 into the assembly-compete form, p beta 2. The last three disulfide bonds to form are those between cysteines 9 and 90, 23 and 72, and 93 and 100. These were identified in JAR cell lysates that had been pulse labeled with [35S]cysteine for 2 or 5 min followed by trapping of the cysteine thiols with iodoacetic acid before immunopurification of the beta subunit forms. Immunopurified p beta 1 was treated with trypsin under nonreducing conditions to liberate [35S]cysteine-containing peptides from the disulfide-linked beta core polypeptide. These tryptic peptides were then separated by high performance liquid chromatography and sequenced to determine the location of the carboxymethyl-[35S]cysteine residues. The three late forming disulfide bonds are most likely the ones involved in stabilizing the conformation of the beta subunit that is required for combination with alpha to form the biologically functional alpha beta heterodimer.  相似文献   

17.
The large abundance of bioactive single- and multiple-stranded cystine-rich peptides in nature has fostered the development of orthogonal thiol-protection schemes and of efficient chemistries for regioselective disulfide formation in synthetic replica for decades. In parallel to these entirely synthetic strategies, an increased knowledge of oxidative refolding mechanisms of proteins has been accumulated, and the collective experience with air oxidation of cysteine-rich peptides into their native disulfide frameworks have largely confirmed Anfinsen's principle of the self-assembly of polypeptide chains. In fact, a continuously growing number of cysteine-rich bioactive peptides from the most diverse sources and with differing cysteine patterns were found to retain the critical sequence-encoded structural information for correct oxidative folding into the native structures as dominant isomers, although in the biosynthetic pathways the mature peptide forms are mostly generated by posttranslational processing of folded precursors. Such self-assembly processes can be optimized by opportune manipulation of the experimental conditions or by induction of productive intermediates. But there are also numerous cases where folding and disulfide formation are thermodynamically not coupled and where the application of a defined succession of regioselective cysteine pairings still represents the method of choice to install the desired native or non-native cystine frameworks. Among our contributions to the state of the art in the synthesis of cystine-rich peptides, we have mainly addressed the induction of correct oxidative refolding of single-stranded cysteine-rich peptides into their native structures by the use of selenocysteine and suitable strategies for disulfide-mediated assembly of monomers into defined oligomers as mimics of homo- and heterotrimeric collagens as a synthetic approach for the development of new biomaterials.  相似文献   

18.
Bovine trypsinogen and chymotrypsinogen were successfully refolded as the mixed disulfide of glutathione using cysteine as the disulfide interchange catalyst. The native structures were regenerated with yields of 40%-50% at pH 8.6 and 4 degrees C, and the half-time for the refolding was approximately 60-75 min. We then refolded threonine-neochymotrypsinogen, which is a two-chain structure held together by disulfide bonds and produced on cleavage of Tyr 146-Thr 147 in native chymotrypsinogen [Duda CT, Light A, J Biol Chem 257 9866-9871, 1982]. Neochymotrypsinogen was denatured and fully reduced, and the thiols were converted to the mixed disulfide of glutathione. The two polypeptide fragments, representing the amino- and carboxyl-terminal domains, were separated on Sephadex G-75. Mixtures of the polypeptide fragments varying in the ratio of their concentration from 1:5 to 5:1 were refolded with yields of 21-28%. The lack of dependence on the concentration of either fragment and the relatively high yields suggest independent folding of the amino- and carboxyl-terminal domains. When the globular structures of the domains formed, they then interacted with one another and produced the native intermolecular disulfide bridge and the proper geometry of the active site.  相似文献   

19.
Chow CY  Wu MC  Fang HJ  Hu CK  Chen HM  Tsong TY 《Proteins》2008,72(3):901-909
Fluorescence and circular dichroism stopped-flow have been widely used to determine the kinetics of protein folding including folding rates and possible folding pathways. Yet, these measurements are not able to provide spatial information of protein folding/unfolding. Especially, conformations of denatured states cannot be elaborated in detail. In this study, we apply the method of fluorescence energy transfer with a stopped-flow technique to study global structural changes of the staphylococcal nuclease (SNase) mutant K45C, where lysine 45 is replaced by cysteine, during folding and unfolding. By labeling the thiol group of cysteine with TNB (5,5'-dithiobis-2-nitrobenzoic acid) as an energy acceptor and the tryptophan at position 140 as a donor, distance changes between the acceptor and the donor during folding and unfolding are measured from the efficiency of energy transfer. Results indicate that the denatured states of SNase are highly compact regardless of how the denatured states (pH-induced or GdmCl-induced) are induced. The range of distance changes between two probes is between 25.6 and 25.4 A while it is 20.4 A for the native state. Furthermore, the folding process consists of three kinetic phases while the unfolding process is a single phase. These observations agree with our previous sequential model: N(0) left arrow over right arrow D(1) left arrow over right arrow D(2) left arrow over right arrow D(3) (Chen et al., J Mol Biol 1991;220:771-778). The efficiency of protein folding may be attributed to initiating the folding process from these compact denatured structures.  相似文献   

20.
Snake neurotoxins are short all-beta proteins that display a complex organization of the disulfide bonds: two bonds connect consecutive cysteine residues (C43-C54, C55-C60), and two bonds intersect when bridging (C3-C24, C17-C41) to form a particular structure classified as "disulfide beta-cross". We investigated the oxidative folding of a neurotoxin variant, named alpha62, to define the chemical nature of the three-disulfide intermediates that accumulate during the process in order to describe in detail its folding pathway. These folding intermediates were separated by reverse-phase HPLC, and their disulfide bonds were identified using a combination of tryptic hydrolysis, manual Edman degradation, and mass spectrometry. Two dominant intermediates containing three native disulfide bonds were identified, lacking the C43-C54 and C17-C41 pairing and therefore named des-[43-54] and des-[17-41], respectively. Both species were individually allowed to reoxidize under folding conditions, showing that des-[17-41] was a fast-forming nonproductive intermediate that had to interconvert into the des-[43-54] isomer before forming the native protein. Conversely, the des-[43-54] intermediate appeared to be the immediate precursor of the oxidized neurotoxin. A kinetic model for the folding of neurotoxin alpha62 which fits with the observed time-course accumulation of des-[17-41] and des-[43-54] is proposed. The effect of turn 2, located between residues 17 and 24, on the overall kinetics is discussed in view of this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号