首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of phosphoglucomutase from Micrococcus lysodeikticus   总被引:2,自引:2,他引:0  
The mechanism of the phosphoglucomutase from Micrococcus lysodeikticus was investigated. Induced-transport tests at low substrate concentrations (0.15mm) showed co-transport of the (32)P label but no induced transport of the (14)C label, which is in quantitative agreement with a phosphoenzyme mechanism with a rapid isomerization of the phosphoenzyme. The results excluded an intramolecular transfer of phosphate and could only have been compatible with a sequential mechanism if the K(m) for glucose 1-phosphate had been over 20 times smaller than the measured value. The results of induced-transport tests at intermediate concentrations (1mm) with both labels agreed quantitatively with a phosphoenzyme mechanism, and induced-transport tests with (14)C-labelled substrates at high concentrations (26mm) indicated that the rate constants for isomerization of the phosphoenzyme must be greater than about 3x10(6)s(-1). Consistent with these findings is the fact that (14)C label exchanged between the substrates twice as rapidly as the (32)P label at chemical equilibrium. Further, since the (14)C label exchanged between the substrates about ten times more rapidly than between the substrates and glucose 1,6-diphosphate, glucose 1,6-diphosphate is not an obligatory intermediate in the interconversion of the substrates. It is concluded that, contrary to previous evidence, the mechanism of the enzyme from M. lysodeikticus is essentially that of the rabbit muscle enzyme. To account for the rapid isomerization of the phosphoenzyme in both cases a mechanism is proposed in which there is no formal isomerization of the phosphoenzyme.  相似文献   

2.
1. The properties and kinetics of the 2,3-diphosphoglycerate-dependent phosphoglycerate mutases are discussed. There are at least three possible mechanisms for the reaction: (i) a phosphoenzyme (Ping Pong) mechanism; (ii) an intermolecular transfer of phosphate from 2,3-diphosphoglycerate to the substrates (sequential mechanism); (iii) an intramolecular transfer of phosphate. It is concluded that these mechanisms cannot be distinguished by conventional kinetic measurements. 2. The fluxes for the different mechanisms are calculated and it is shown that it should be possible to distinguish between the mechanisms by appropriate induced-transport tests and by comparing the fluxes of (32)P- and (14)C-labelled substrates at chemical equilibrium. 3. With (14)C-labelled substrates no induced transport was found over a wide concentration range, and with (32)P-labelled substrates co-transport occurred that was independent of concentration over a twofold range. (14)C-labelled substrates exchange at twice the rate of (32)P-labelled substrates at chemical equilibrium. The results were completely in accord with a phosphoenzyme mechanism and indicated a rate constant for the isomerization of the phosphoenzyme of not less than 4x10(6)s(-1). The intramolecular transfer of phosphate (and intermolecular transfer between two or more molecules of substrate) were completely excluded. The intermolecular transfer of phosphate from 2,3-diphosphoglycerate would have been compatible with the results only if the K(m) for 2-phosphoglycerate had been over 7.5-fold smaller than the observed value and if an isomerization of the enzyme-2,3-diphosphoglycerate complex had been the major rate-limiting step in the reaction. 4. The very rapid isomerization of the phosphoenzyme that the experiments demonstrate suggests a mechanism that does not involve a formal isomerization. According to this new scheme the enzyme is closely related mechanistically and perhaps evolutionarily to a 2,3-diphosphoglycerate diphosphatase.  相似文献   

3.
Mechanism of action of rabbit liver phosphoglucomutase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Induced-transport tests with comparatively undegraded rabbit liver phosphoglucomutase show that the enzyme possesses a phosphoenzyme mechanism and that any interconversion of phosphoenzyme forms is very rapid. A relatively stable 32P-labelled phosphoenzyme was isolated, which exchanged label rapidly with substrates. The phospho group appears to be bonded to a serine residue on the enzyme.  相似文献   

4.
1. Phosphoglucomutase from Micrococcus lysodeikticus was incubated with (14)C- and (32)P-labelled glucose 1,6-diphosphate and separated from the cofactor on a Sephadex column. (32)P-labelled phosphate (0.7mol/mol of enzyme) was associated with the enzyme, but no (14)C label was. 2. The (32)P-labelled enzyme exchanged its label with the substrates. When the labelled enzyme was incubated in Tris buffer, pH8.3, at 30 degrees C the proportion of exchangeable label slowly fell indicating a half-life of the phosphoenzyme of about 50h. 3. When HClO(4) was added to the labelled phosphoenzyme all of the label was precipitated with the protein and none was released as P(i). On alkaline hydrolysis P(i) was released at a rate comparable with the rate of hydrolysis of the phosphoenzyme from rabbit muscle. 4. We conclude that the phosphoenzyme from Micrococcus lysodeikticus yields a relatively stable, catalytically active phosphoenzyme when treated with cofactor, and that there is no evidence for the formation of an enzyme-glucose 1,6-diphosphate complex. The properties of the phosphoenzyme, which resemble those of rabbit muscle phosphoglucomutase, suggest that the phosphate may be bound to serine.  相似文献   

5.
The reaction mechanism of the solubilized red beet (Beta vulgaris L.) plasma membrane ATPase was studied with a rapid quenching apparatus. Using a dual-labeled substrate ([γ-32P]ATP and [5′,8-3H]ATP), the presteady-state time course of phosphoenzyme formation, phosphate liberation and ADP liberation was examined. The time course for both phosphoenzyme formation and ADP liberation showed a rapid, initial rise while the timecourse for phosphate liberation showed an initial lag. This indicated that ADP was released with formation of the phosphoenzyme while phosphate was released with phosphoenzyme breakdown. Phosphoenzyme formation was Mg2+-dependent and preincubation of the enzyme with free ATP followed by the addition of Mg2+ increased the rate of phosphoenzyme formation 2.3-fold. This implied that phosphoenzyme formation could result from a slow reaction of ATP binding followed by a more rapid reaction of phosphate group transfer. Phosphoenzyme formation was accelerated as the pH was decreased, and the relationship between pH and the apparent first-order rate constants for phosphoenzyme formation suggested the role of a histidyl residue in this process. Transient kinetics of phosphoenzyme breakdown confirmed the presence of two phosphoenzyme forms, and the discharge of the ADP-sensitive form by ADP correlated with ATP synthesis. Potassium chloride increased the rate of phosphoenzyme turnover and shifted the steady-state distribution of phosphoenzyme forms. From these results, a minimal catalytic mechanism is proposed for the red beet plasma membrane ATPase, and rate constants for several reaction steps are estimated.  相似文献   

6.
1. The calculation of the rate constants from steady-state kinetics of a single-substrate-single-product enzyme reaction in which there is an isomerization of the enzyme is described. 2. It is shown that even with the use of isotopically labelled substrates a set of solutions for the constants is obtained rather than a unique solution. However, limits are derived within which they must lie. 3. The most appropriate observations to determine the rate constants are measurements of V(max.) and K(m) for both substrate and product, and measurement of the degree of countertransport in an induced-transport test. 4. Experimental procedures for induced-transport tests and the quantitative interpretation of the results obtained are discussed. 5. Product inhibition is shown to be an ambiguous and imprecise means of determining the rate constants. Further, the absence of a [substrate]x[product] term in the denominator of the steady-state rate equation does not necessarily mean that the isomerization of the enzyme is rapid, since the term also disappears when the isomerization is very slow. 6. Similar considerations apply to carrier mechanisms.  相似文献   

7.
1. Phosphoglucomutase of Micrococcus lysodeikticus was labelled at the active site by exchange with (32)P-labelled substrates of high specific radioactivity. 2. Partial acid hydrolysis gave rise to radioactive peptides; serine phosphate was identified as one of the derivatives. 3. Comparison of the other (32)P-labelled peptides with the peptides obtained from the (32)P-labelled rabbit muscle phosphoglucomutase indicates that the sequence around the reactive serine residue is identical in both enzymes.  相似文献   

8.
32P-labelled phosphoglucomutase was digested with trypsin after denaturation and two peptides were isolated that contained the bulk of the radioactivity bound to peptides. Both peptides appeared to derive from an identical section of the molecule. Peptic and subtilisin digests of the tryptic peptides were prepared. The resulting radioactive peptides were purified and their sequences studied. The presence of a single serine [32P]phosphate residue was clearly established. Difficulties in purification and low yields, especially of the tryptic peptide, prevented exhaustive sequence studies, but a tentative sequence is proposed as:Ala-Ile-Gly-Gly-Ile-Ile-Leu-Thr-Ala-SerP-His-Asx-Pro-Gly-Gly-Pro-(Asx2,Gly)-Phe-Gly-Ile-Lys(where SerP represents serine phosphate and Asx represents aspartic acid or asparagine). The results do not support the presence of two serine phosphate residues in the denatured enzyme, but confirm previous results of a unique sequence around a single serine phosphate residue.  相似文献   

9.
We have examined the activity of the thiamin phosphate pyrophosphorylase in Arabidopsis thaliana wild type and in a mutant (th-1) which requires exogenous thiamin for growth. Mutant and wild-type plants grown in 1 × 10−7 molar thiamin were used for the examination of the production of thiamin and thiamin monophosphate (TMP) using 4-methyl-5-hydroxyethylthiazole phosphate and 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate as substrates. While the wild-type strain formed both thiamin and TMP, the th-1 mutant did not. When TMP was added to the extracts, the th-1 mutant, as well as wild type, produced thiamin. Accordingly, it was concluded that the th-1 mutant was defective in the activity of TMP pyrophosphorylase. Some of the characteristics of the enzyme from the wild-type plant were examined. The optimum temperature for the reaction is 45°C, and the Km values for the substrates are 2.7 × 10−6 molar for 4-methyl-5-hydroxyethylthiazole phosphate and 1.8 × 10−6 molar for 2-methyl-4-amino-5-hydroxymethylpyrimidine pyrophosphate.  相似文献   

10.
The 31P nuclear magnetic resonance of the covalently bound phosphate group at the active site of phosphoglucomutase has been examined by means of Fourier transform nuclear magnetic resonance spectroscopy. At a pD of 7.9, the chemical shift of the 31P nucleus is 3.8 ± 0.1 ppm downfield from 85% H3PO4; this shift is close to that of phosphoserine (dianionic form). Proton decoupling experiments suggest that the phosphorus of the enzymic phosphate group is coupled to protons with chemical shifts similar to those of phosphoserine. In D2O, with proton decoupling, the ratio of the longitudinal and transverse diamagnetic relaxation times in solutions of 1.6 mm phosphoenzyme yields an approximate correlation time of 10?7s for the 31P nucleus of the enzyme. This is within the range of values expected for tumbling of the entire protein molecule and suggests that the covalently attached phosphate group is immobilized or “frozen” at the active site of the enzyme by means of noncovalent interactions with adjacent groups. Consistent with this, the pKa of the enzymic phosphate is significantly lower than that of phosphoserine. Binding of the diamagnetic activator, Mg2+, causes little or no change in the chemical shift of the resonance of the enzymic phosphorus from pD = 5.3 to 7.6, a downfield shift (?0.5 ± 0.1 ppm) at pD = 8.6, but an upfield shift (0.8 ±0.1 ppm) for that of phosphoserine, suggesting that bound Mg2+ is not coordinated to the enzymic phosphate. Independent evidence against direct coordination is provided by the paramagnetic effects of Ni2+ bound at the active site on the relaxation rates of the enzymic phosphorus. By assessing the paramagnetic effect of bound Ni2+ on both the longitudinal and transverse relaxation rates of the observed resonance, and by using correlation times determined for water proton relaxation induced by the Ni2+ complex, a range of Ni2+ to phosphorus distances of 4 to 6 Å is calculated. These distances suggest a second sphere interaction between the enzyme-bound metal and the enzymic phosphate group. Bound Ni2+ also markedly decreases the integrated intensity of the 31P resonance. Although the reason for this intensity decrease is incompletely explained, the present data establish the close proximity of the bound metal ion and the active site phosphoserine on phosphoglucomutase.  相似文献   

11.
J B Jones  N Baskevitch 《Steroids》1973,22(4):525-538
The possibility that aggregation of hydrophobic plant sterols such as β-sitosterol in aqueous solution might be one of the factors operating against facile microbial degradation of their C-17 side chains has been investigated using Δ5-3-ketostigmastane derivatives as model substrates. Analysis by an acid-catalyzed isomerization kinetic procedure has confirmed that they are severely aggregated even in dilute aqueous solution and that addition of large proportions of an organic solvent such as methanol is required to effect complete solvation of the steroids. However, oxygenation of the stigmastane side chain causes dramatic reductions in their aggregation tendencies. Using the Δ5→ Δ4-3-ketosteroid isomerase of P. testosteroni as a representative enzyme of microbial steroid metabolism, it has been shown that although the degrees of solvation which can be achieved with unmodified stigmastane-type side chains are insufficient for enzymic isomerization to occur, the 22,23-epoxide or -diol derivatives do become good substrates when they are only marginally disaggregated. The overall results indicate that aggregation in aqueous solution of plant sterols is an important factor to be taken into account when microbiological degradation of the C-17 group is desired and that prior hydroxylation of the potential substrates should be beneficial.  相似文献   

12.
When the hydrolytic reaction between eel electric organ (Na + K) · ATPase and [γ-32P]ATP is terminated at neutral pH by heat precipitation, a phosphoenzyme complex is formed which reaches maximal levels in the simultaneous presence of Mg, Na, and K. After formation of a steady-state level of phosphoenzyme in the presence of Mg and Na, a pulse of K increases the level of the heat-precipitated phosphoenzyme (while decreasing the level of the acid-precipitated phosphoenzyme). The formation of the heat-precipitated phosphoenzyme is clearly inhibited by ouabain only when the phosphoenzyme is formed in the presence of Mg, Na, and K. Inorganic phosphate decreases the level of the heat-precipitated phosphoenzyme, but not that of the acid-precipitated phosphoenzyme (in the presence of Mg and Na or in the presence of Mg, Na, and K). Moreover, a heat-precipitated, ouabain-sensitive phosphoenzyme forms in the reaction between the eel (Na + K) · ATPase and 32Pi with or without ATP. The pH stability of the heat-precipitated phosphoenzyme complex is maximal at pH 6 to 8, and this complex shows little or no reactivity with neutral hydroxylamine, suggesting that the phosphate is not bound to an acyl residue of the protein. These experiments indicate that both heat-resistant and acid-resistant phosphoenzymes are formed during the (Na + K) · ATPase reaction at pH 7.4.  相似文献   

13.
P. M. Turvey  J. W. Patrick 《Planta》1979,147(2):151-155
Kinetin, applied as a dispersion in aqueous lanolin to the stumps of decapitated stems of P. vulgaris plants with their roots removed, was found to promote the transport of 14C- and 32P-labelled assimilates to the site of hormone application. Measurement of photosynthetic rate of, and assimilate export rate from the source leaves, indicated that kinetin was not acting to promote assimilate transport by stimulating these processes. Moreover, it was found that the time between kinetin application and detection of an enhanced transport flux was independent of the distance over which kinetin would need to move to be present throughout the length of the transport pathway. These observations, together with the finding that lateral applications of kinetin to the stems resulted in an enhanced localized accumulation of assimilates, provided evidence that kinetin acted locally at its point of application to stimulate assimilate transfer.Abbreviations GA3 gibberellic acid - IAA indol-3yl-acetic acid  相似文献   

14.
The effect of glucagon on the phosphorylation of pyruvate kinase in 32P-labelled slices from rat liver was investigated. Pyruvate kinase was isolated by immunoadsorbent chromatography. The enzyme was partially phosphorylated in the absence of added hormone (0.2 mol of phosphate/mol of enzyme subunit). Upon incubation with 10?7 M glucagon, the incorporation of [32P]phosphate was 0.6–0.7 mol/mol of enzyme subunit. Concomitantly, the concentration of intracellular cyclic 3′,5′-AMP increased from 0.3 to 3.2 μM. The phosphorylation inhibited the enzyme activity at low concentrations of phosphoenolpyruvate (60% at 0.5 mM). Almost maximal phosphorylation of the enzyme was reached within 2 min after the addition of glucagon. The concentration of hormone giving half maximal effect on the pyruvate kinase phosphorylation was about 7×10?9M. The inactivation of the enzyme paralleled the increase in phosphorylation. It is concluded that pyruvate kinase is phosphorylated in the intact liver cell.  相似文献   

15.
1. The mechanism of cycloartenol biosynthesis in leaves of Solanum tuberosum was investigated with the use of [2-14C,(4R)-4-3H1]mevalonic acid. 2. The 3H/14C atomic ratio in cycloartenol was 6:6, the same as that in squalene; this eliminates lanosterol as a possible biosynthetic precursor of cycloartenol, and indicates that a hydrogen migration from C-9 to C-8 occurs. 3. Chemical isomerization of the cycloartenol to lanosterol (3H/14C ratio 5:6) and parkeol (3H/14C ratio 6:6) confirms the hydrogen migration from C-9 to C-8. 4. Possible mechanisms for the biosynthesis of cycloartenol and parkeol are discussed. 5. The 3H/14C ratio for 24-methylenecycloartanol was 6:6, demonstrating that the hydrogen atom at C-24 is retained during alkylation of the cycloartenol side chain.  相似文献   

16.
The intracellular acid phosphatase II (ACPase II) produced by Aspergillus niger KU-8 preferentially dephosphorylates C-6 phosphate groups rather than C-3 phosphate groups of phosphoryl oligosaccharides. In this study, the kinetic parameters of ACPase II were measured. 32-phosphoryl maltotriose and 62-phosphoryl maltotriose, which differ only in the binding position of the phosphate group, were prepared and used as the substrates. The K m for both substrates were similar. However, the k cat value for the 62-phosphoryl maltotriose was about three-fold of that for the 32-phosphoryl maltotriose.  相似文献   

17.
The physiological correlation between nucleoside-diphosphate kinases (NDP-kinases) and the 21-kDa guanine nucleotide-binding proteins (G1 and G2) which are copurified with the enzymes from the cell membrane fractions of Ehrlich ascites tumor cells has been biochemically investigated in vitro. We found that: incubation of the phosphoenzyme (enzyme-bound high-energy phosphate intermediate) of NDP-kinases (F-I and F-II) with one of the nucleoside 5'-diphosphates in the presence of 1 mM Mg2+ or 0.25 mM Ca2+ results in the rapid formation of nucleoside 5'-triphosphates without strict base specificity; GDP on the guanine nucleotide-binding proteins (G1, G2 and recombinant v-rasH p21) acts as a phosphate acceptor for the high-energy phosphates of the phosphoenzyme in the presence of 0.25 mM Ca2+; and [32P]GTP is preferentially formed from the 32P-labelled phosphoenzyme F-I and GDP-bound G1 or GDP-bound recombinant v-rasH p21 protein, even if any other nucleoside 5'-diphosphates are present in the reaction mixture. Although [32P]GTP formed was bound with the guanine nucleotide-binding proteins, it was immediately hydrolyzed by the proteins themselves in the presence of 5 mM Mg2+, but not in the presence of 0.25 mM Ca2+. Available evidence suggests that NDP-kinase may be responsible for the activation of the guanine nucleotide-binding proteins (G1, G2 and p21 proteins) through phosphate transfer by the enzyme.  相似文献   

18.
Ca2+ (sarco-endoplasmic reticulum Ca2+ ATPase (SERCA)) and Cu+ (ATP7A/B) ATPases utilize ATP through formation of a phosphoenzyme intermediate (E-P) whereby phosphorylation potential affects affinity and orientation of bound cation. SERCA E-P formation is rate-limited by enzyme activation by Ca2+, demonstrated by the addition of ATP and Ca2+ to SERCA deprived of Ca2+ (E2) as compared with ATP to Ca2+-activated enzyme (E1·2Ca2+). Activation by Ca2+ is slower at low pH (2H+·E2 to E1·2Ca2+) and little sensitive to temperature-dependent activation energy. On the other hand, subsequent (forward or reverse) phosphoenzyme processing is sensitive to activation energy, which relieves conformational constraints limiting Ca2+ translocation. A “H+-gated pathway,” demonstrated by experiments on pH variations, charge transfer, and Glu-309 mutation allows luminal Ca2+ release by H+/Ca2+ exchange. As compared with SERCA, initial utilization of ATP by ATP7A/B is much slower and highly sensitive to temperature-dependent activation energy, suggesting conformational constraints of the headpiece domains. Contrary to SERCA, ATP7B phosphoenzyme cleavage shows much lower temperature dependence than EP formation. ATP-dependent charge transfer in ATP7A and -B is observed, with no variation of net charge upon pH changes and no evidence of Cu+/H+ exchange. As opposed to SERCA after Ca2+ chelation, ATP7A/B does not undergo reverse phosphorylation with Pi after copper chelation unless a large N-metal binding extension segment is deleted. This is attributed to the inactivating interaction of the copper-deprived N-metal binding extension with the headpiece domains. We conclude that in addition to common (P-type) phosphoenzyme intermediate formation, SERCA and ATP7A/B possess distinctive features of catalytic and transport mechanisms.  相似文献   

19.
Normal and neoplastic human cells in culture were suspended under isotonic conditions and incubated for one minute with the substrates, including 32P-labelled inorganic phosphate, and cofactors of the glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase reactions (complete medium), as well as with an incomplete medium lacking ADP, NAD+ and glyceraldehyde-3-phosphoric acid. The neoplastic cell types incubated in the complete medium synthesized three to six times more labelled ATP than the corresponding normal cells. In the incomplete medium only insignificant amounts of labelled ATP were formed during one-minute incubation by all types of cells. From other types of experiments it could be concluded that the labelled ATP, isolated from the cells incubated in the complete medium, was formed at the surface of the cell membranes. Only negligible amounts of enzymes engaged in the synthesis of ATP have leaked out from the cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号